
TSW – Introduction

Alexandre David
1.2.05

Credits: some slides by Alan Burns & Andy Wellings.

07-09-2010 TSW'10 2

Teachers
Main teachers

Alexandre David ← SW5 coordinator
René Rydhof Hansen

Guest lecturers
Brian Nielsen
Jens Alsted

07-09-2010 TSW'10 3

Course overview
Introduction to RTS – 1
Fault tolerance – 2
NXT sensors & actuators
RT facilities – 9,10
RT analysis – 11
OSEK on NXT, case-study
Project presentations
UPPAAL
Times tool
Concurrent programming – 4
Synchronization – 6,5
Atomicity, deadlocks – 7,8
Programming RTS – 10,12
Timing faults – 13
Exceptions – 3
Low-level programming – 14
Project presentations

Basics, tight schedule
early for projects.
Project: define, analyze,
experiment with sensors.

Deadline

Deadline

2nd main part in parallel
with projects.

Last non vital concepts.

07-09-2010 TSW'10 4

Goals of the course
Understanding of real-time systems

focus on the software side
→ requirements on languages and OS
concepts of scheduling, timing, concurrency, and
correctness
→ how to fullfil those requirements
practice through the projects.

07-09-2010 TSW'10 5

What is a real-time system?
Let’s discuss these terms:

real-time
response time
sensors/actuators
reactive system
embedded systems
safety-critical systems

Which systems are RT?
Where are they?

07-09-2010 TSW'10 6

What is a real-time system?
A real-time system is an information
processing system which has to respond to
externally generated input stimuli within a
finite and specified period of time.

Respond to external stimuli → reactive system.
Correctness depends on

the logical result - right result - and
the time of delivery - right time.

This system is part of a larger system
→ embedded computer system.

Note: 99% of all processors are for embedded
systems.

07-09-2010 TSW'10 7

Terminology
Hard real-time systems: responses must occur before the
specified deadline otherwise the system does not work and
(usually) breaks.

Braking system, air traffic…
Soft real-time systems: responses should occur before the
specified deadline but may still work, possibly in a degraded
mode, if occasional deadlines are missed.

Video conference, data acquisition…
Firm real-time systems: have timing requirements typical of
hard real-time systems with service requirements typical of
soft real-time systems.

Allow RT and non RT tasks to co-exist.
No benefit in late delivery of service.

Abstraction: associate a cost function to missing deadlines.

07-09-2010 TSW'10 8

Terminology
Time aware: explicit reference to time.

Real-time = wall clock.

Reactive systems: must produce outputs as
response of inputs.

Control systems.

Jitter: delays, may be non-deterministic.
Input/output jitter.
Feedback loop: combine the outputs with the inputs
to control the system – compensate jitters and
other uncontrollable effect, auto-adjustment.

07-09-2010 TSW'10 9

Terminology
Time-triggered: computations are triggered
by passage of time.

Periodic activity: polling, USB 1 & 2.

Event-triggered: computations are triggered
by events.

Sporadic (occurrence bounded) or aperiodic
(unbounded) activity: alarm, USB 3.

07-09-2010 TSW'10 10

A simple fluid control system

Pipe

Flow meter

Valve

Interface

Computer
Time

Input flow
reading

Processing

Output valve
angle

07-09-2010 TSW'10 11

A typical embedded system

Algorithms for
Digital Control

Data Logging

Data Retrieval
and Display

Operator
Interface

Interface Engineering
System

Remote
Monitoring System

Real-Time
Clock

Database

Operator’s
Console

Display
Devices

Real-Time Computer

07-09-2010 TSW'10 12

Characteristics of RTS
Predictability: guarantee response times, worst-case
response time analysis.

Predictability is more important than efficiency.

Concurrency: control of real-world devices, several
components operating in parallel.
Interaction: sensors, actuators, special hardware →
special programming needs.
Digital: sample inputs (ADC), numerical
computations, send outputs (DAC).
Scale: large and small, few and numerous.
Safety-critical: failure means loss of lives.

07-09-2010 TSW'10 13

RT programming languages
Assembly languages
Sequential systems implementation languages — e.g. RTL/2,
Coral 66, Jovial, C.
Both normally require operating system support.
High-level concurrent languages. Impetus from the software
crisis. e.g. Ada, Chill, Modula-2, Mesa, Java.
No operating system support!
We will consider:

Java/Real-Time Java
C and Real-Time POSIX (not in detail)
Ada 2005

07-09-2010 TSW'10 14

Real-time languages and OSs

Hardware

Operating

System

User Programs

Typical OS Configuration

Hardware

Including Operating

System Components

User Program

Typical Embedded Configuration

07-09-2010 TSW'10 15

Aspects of RTS
Real-Time

Temporal
Requirements Structure Classification Characteristics

(see next page)

Deadline/

Latency
Input/output

jitter

Periodic/
Sporadic/
Aperiodic

Time-
triggered

Event-
triggered Criticality Role of

time

hard time-aware

reactivesoft

firm

07-09-2010 TSW'10 16

Characteristics

Real-Time
facilities Concurrency Numerical

computation

Interaction
with

hardware

Efficiency/
Predictability

Reliability/
Safety

Large/
Complex

Aspects of RTS

