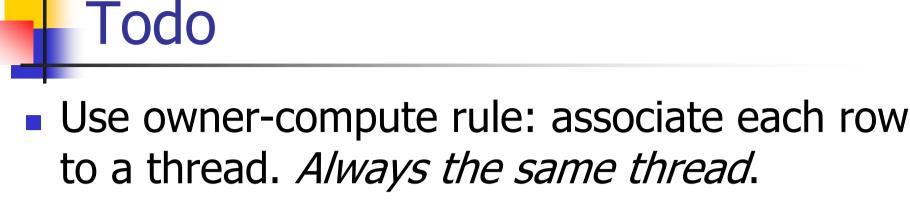
Assignment 4/5


Alexandre David 1.2.05 adavid@cs.aau.dk

Overview

- OpenMP
 - Easy matrix multiplication.
- Continue on matrix inversion case-study.
 - More fine-grained synchronization.
 - Use of condition variables.
 - Use of split-barrier.

Finer Data Dependency Analysis

- Explained in the assignment, you need to spend time to understand it.
 - 1st loop pivot.
 Max needs only column k of elements (below row k).
 - Swapping needs only 2 rows.
 - Division step depends on the row k (after swapping).
 - 2nd loop back-substitution.
 The next iteration depends on the last row of the current iteration.

- Split computations to extract these dependencies.
- 1st loop: use a condition variable. The trick is that the threads do not know what will be needed, so we use ok=1 (1st element) and ok=2 (whole row) to say what is ready.
 - The right thread will wait for what it needs only.

2nd loop – Use the concept of interleaving computation and communication with a splitbarrier.

- The thread responsible for the last row arrive at the barrier when it has computed it – the others just arrive.
- All threads wait before the next iteration.
- Synchronization is more loose: All threads do not need to wait at the same time.

Todo

Optional Todo

- We can replace the split-barrier by a finer condition variable.
 - In fact to proceed to iteration k, we need the row
 k. Use "current k ≥ ready k" as the condition –
 the k is decreasing.
 - One thread will update the "ready k".