Assignment 1

Alexandre David

1.2.05
adavid@cs.aau.dk

Overview

- Question
- Basic Matrix Multiplication
- C warm up
- Re-arranged Matrix Multiplication
- cache effect
- Block-Matrix Multiplication
- cache effect

Matrix Multiplication Example

- Common example, will be used many times in the course.
- $C=A * B$, where A, B, and C are matrices.

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

(?) Complexity?

Matrix Multiplication Example

Cache Characteristics

- Hit ratio (behavior): fraction of references satisfied by the cache.
- Cache line (= bus width): granularity.
- Associativity (architecture): "collision list" to reduce cache eviction.
- For the matrix: $2 \mathrm{n}^{2}$ fetches from memory to populate the cache, and then n^{3} direct accesses at full speed.

I mpact on Memory Bandwidth (and Latency)

- Access to successive words much better than random access.
- Higher bandwidth (whole cache line at once)
- Better latency (successive words already in cache)

Example: Strided Access

Programming

- Add functions to
- matrix_fibo.c
- pmatrix.c
- Read-only the rest.
- precision issues
- Gauss elimination with pivoting

