Intel

.!'_ Threading Building Blocks

Alexandre David
1.2.05
adavid@cs.aau.dk




i What is TBB?

= C++ library for multi-threading.
= Internally uses pthreads (Linux).
= Abstracts from threading details.
= Based on tasks.
» Offers concurrent data-structures.
s C++
= Dual licensed GPL/commercial.




i Benefits

= Specify tasks instead of thread.

= Thread programming: map work to threads, do
the load balancing etc...

= Task programming lets the library schedule
threads for you.

= Abstraction on raw threads, more portable.
= Threading for performance.

= Higher level simple solutions for computationally
intensive work.

= Compatible with other threading packages.
= Mix with OpenMP or pthreads.



i Benefits

= BB emphasizes scalable data-parallel
programming.
» Data-parallel programming scales well with large
problems — partition data set.

= Special constructs to do the partioning.

= Generic programming.

= Write best possible algorithms with as few
constraints as possible.




i Important Concepts

= Recursive splitting.

= Break problems recursively down to some
minimal size.

= Works better than static division, works well with
task stealing.

= Task stealing.
= A way to manage load balancing.

= Generic algorithms
= algorithm templates.



i Overview

= Algorithms
= parallel_for
= parallel_reduce
= parallel_scan
=« parallel_while
= pipeline
= parallel_sort
= Concurrent containers
= concurrent_queue
= concurrent_vector

= concurrent_hash_map

M D @D @




i Basic Algorithms

= Loop parallelization
= parallel_for

» parallel_reduce

= parallel_scan

=« — building blocks.




i Start & End

s Need to start task scheduler.

s Declaring: task_scheduler_init inift;
in main does the job.

= Can be tweaked but the default is usually
good enough.
= Number of threads automatic.



i parallel_for

Original code:

void Serial ApplyFoo(float a[], size_t n)
{

}

for(size_t i=0; i< n; ++i) Foo(a[i]);




i parallel_for

Algorithm class:

#include “tbb/blocked_range.h”
class ApplyFoo

{
float *const my_a;
public:
void operator ()(const block_range<size_t>& r) const

{
float *a = my_a;
for(size_t i = r.begin(); i I= r.end(); ++i) Foo(a[i]);
}
ApplyFoo(float a[]) : my_a(a) {}
}:

10



i parallel_for

Algorithm call:

#include “tbb/parallel_for.h”

void ParallelApplyFoo(float a[], size_t n)
{

parallel_for(blocked_range<size_1>(0,n,GrainSize),
ApplyFoo(a)):

11



i Recursive Splitting

= General form of the constructor:
blocked_range<T>(begin,end,grainsize)

= [Setting the grain to 10000 is a good rule of
thumb. The grain should take 10000-100000
instructions at least.]

= This range is used to do recursive splitting
automatically.
« If currentSize > grainsize then split.
= It s not the minimal size of the data-sets.
=« Minimum threshold for parallelization.
= Concept — minimum block size.

12



i Automatic Grain Size

= New version of TBB support automatic grain
Sizes.

« The algorithms (parallel_for...) need a partitioner.
= There’ s a default auto_partitioner().
= It’ s using heuristics.

13



i Aha - Recursive Algorithms

= How to implement recursive algorithms using
parallel_for?

= Define your own range splitting class.
« Call parallel_for.
= 1BB will split recursively as needed.

14



i parallel_reduce

Original code:

float SerialSumFoo(float a[]], size_t n)

{

float sum = O;
for(size_ti=0;il= n; ++i) sum += Foo(a[i]):

return sum,

}

15



i parallel_reduce

Algorithm class:

class SumFoo

{
float* my_a;
public:
float sum;
void operator()(const blocked_range<size_t>& r)

{

float *a = my_a;

for(size_t i = r.begin(); i I= r.end(); ++i) sum += Foo(a[i]);

}

SumFoo(SumFoo& x, split) : my_a(x.my_a), sum(0) {}
void join(const SumFooé& y) { sum += y.sum; }
SumFoo(float a[]) : my_a(a), sum(0) {}

16



i Reduce

= Associative operator.

= Recursive algorithm to compute it.
= Schwartz’ algorithm.

= [BB:
= Splitting constructor
= Nhon-const method to compute on blocks
= join to combine results

17



i parallel_reduce

Call:

float ParallelSumFoo(const float a[], size_t n)

{
SumFoo sf(a);

parallel_reduce(blocked_range<size_1>(0,n,GrainSize),
st);
return sf.sum;

}

18



pa Fa I Ie l_Sca N Methods needed:

class Body {
T reduced_result; ... x & y data
public:
Body(x & y)...
T get_reduced_result() const { return reduced_result; }
void operator()(range, tag) {
T temp = reduced_result;
for(i : range) {
temp <op>= X[i];
if (tag::is_final_scan()) y[i] = temp;
}
reduced_result = temp;
}
Body(Body&b, split) - split constructor
void reverse__join(Bodyé a) {
reduced_result = a.reduced_result <op> reduced_result;

}
void assign(Body& b) { reduced_result = b.reduced_result; } };

19



i parallel _scan

= One class to define the operations for both
passes of the algorithm (recall 2 passes).

» Differentiation with is_final_scan().

= prescan computes the reduction, doesn’ t touch
Y.

= final scan updates .

= reverse_join: this is the right argument.

20



i Advanced Algorithms

= Different kinds of parallelizations:

= parallel_while
= Suitable for streams of data

= pipeline
= parallel_sort

21



i parallel_while

Original code:

void Serial ApplyFooToList(Item *root)

{
for(Item* ptr = root; ptr I= NULL; ptr = ptr->next)

Foo(ptr->data);

22



i parallel_while

class ItemStream

{

Item *my_ptr;
public:
bool pop_if_present(Item*& item) {
if (my_ptr) {
item = my_ptr;
my_ptr = my_ptr->next;
return true;
} else {
return false;

}

}
ItemStream(Item* root) : my_ptr(root) {}

¥

23



i parallel_while

= The class acts as an item generator and
writes items where specified.

= The pop_if_present does not need to be
thread safe because it is never called
concurrently.

= T his makes it non-scalable — could be a
bottleneck.

= It makes more sense when parallel_while can
acquire more work: call to parallel_while::add
(item).

24



i parallel_while

(functor)

class ApplyFoo {
public:
void operator()(Item™ item) const {
Foo(item->data);

}
typedef Item* argument_type;

.

void ParallelApplyFooToList(Item* root) {
parallel_while<ApplyFoo> w;
ItemStream stream;
ApplyFoo body:;
w.run(stream body);

}

25



i Pipelining

filter
:
|
|
data data v data data
—>stagel > stage2 > stage3 —>

TBB: One stream of data — linear pipeline.

26



i Filter Interface

namespace tbb {
class filter {
protected:
filter(bool is_serial);
public:
bool is_serial() const;
virtual void* operator()(void™ item) = O;
virtual ~filter();
}:
}

27



i Building Pipelines

tbb::pipeline pipeline;
MyInputFilter input(args):.
pipeline.add_filter(input);
pipeline.add_filter(transform);

MyOutputFilter output(args):.
pipeline.add_filter(output).

pipeline.run(buffer_args):

pipeline.clear();

MyTransformFilter transform(args):

28



i Non-Linear Pipelines

To

P

\ 4
pologically sorted pipeline

ot

29



i parallel_sort

= parallel_sort(i,j,comp).

= Types i and j are compared using comp
(functor).

= Types i and j must be accessible randomly
(are std::RandomAccesslterator).

= Uses quicksort internally, average time O
(n/og n).

30



i Concurrent Queue

= concurrent_queue<T>
= NO allocator argument, uses scalable allocators.
« pop_if_present, pop (blocks).

= Size() (signed) = #push - #started pop
if <0 then there are pending pops.

= empty()

= No front() or back() — could be unsafe.

= Inherently bottlenecks, threading explicit,
passive structure.

31



i Concurrent Vector

= concurrent_vector<T>
= Similar to sti

= Iterators supported.

09-05-2011 MVP'11 - Aalborg University

32



i Concurrent Hash Table

= concurrent_hash_map<Key, T,HashCompare>

= HashCompare is a trait.

= Static size_t hash(const Key& x)
static bool equal(const Key& x, const Key& y)

= Read/write access by accessor classes

= const_accessor
dCCeSSOor

= ~ smart pointers.
= Accessors lock elements.

33



i concurrent_hash_map

= Interesting methods:

= bool insert(const accessor& result, const Key&

Key);
« bool erase(const Key& key);

= bool find(const accessor& result, const Key& key)
const;

= Jterators supported too.

34



i Memory Allocation

= You know of false sharing.

= Scalable allocator allocates in multiple of
cache line sizes and pads memory.

35



i Locks

= Support for locks.

= scoped_lock object, keeps exception safety.
= Can use constructor argument to avoid lock-unlock, like

synchronized in Java.

typedef spin_mutex MyMutex;
MyMutex myMutex;

MyMutex::scoped_lock mylock(myMutex);

-

or
MyMutex::scoped_lock lock;
lock.acquire(myMutex);

lock.release();

Different types of
locks available, good
to use a typedef to
change if needed.

mutex, spin_mutex,
gueuing_mutex...

36




i Atomic Operations

= atomic<T>
= some simple scalar atomic operations supported,
= compare and swap

37



