!'_ Graph Algorithms

Alexandre David
1.2.05
adavid@cs.aau.dk

Today

= Recall on graphs.

= Minimum spanning tree (Prim’s algorithm).

= Single-source shortest paths (Dijkstra’s
algorithm).

= All-pair shortest paths (Floyd’s algorithm).

= Connected components.

Graphs — Definition

= A graph is a pair (V,E)
= IV finite set of vertices.
= E finite set of edges.
e € E is a pair (u,v) of vertices.
Ordered pair — directed graph.
Unordered pair — undirected graph.

™

(a)
Figure 10.1

vertex

(b)

(a) An undirected graph and (b) a directed graph.

Graphs — Edges

= Directed graph:
» (U,v) € E isincident from v and incident to v.
» (U,v) € E: vertex vis adjacent to u.

= Undirected graph:

= (U,v) € E isincident on uand v.

= (U,v) € E: vertices uand v are adjacent to
each other.

4 adjacent to 6

(a) (b)
Figure 10.1 (a) An undirected graph and (b) a directed graph.

iGraphs — Paths

= A path is a sequence of adjacent vertices.
» Length of a path = number of edges.
= Path from vto u= uis reachable from v.
« Simple path: All vertices are distinct.

= A path is a cycle if its starting and ending
vertices are the same.

= Simple cycle: All intermediate vertices are
distinct.

Simple path: Simple path:
Simple cycle: Simple cycle:
Non simple cycle: Non simple cycle:

) /O
(a) (b)
Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs

= Connected graph: 3 path between any
pair.

s G'=(V',E’) sub-graph of G=(V,E) if V'CV
and E'CE.

= Sub-graph of G induced by V': Take all
edges of E connecting vertices of V'CV,

= Complete graph: Each pair of vertices
adjacent.

= [ree: connected acyclic graph.

Sub-graph:
Induced sub-graph:

(a)
Figure 10.1

(b)
(a) An undirected graph and (b) a directed graph.

10

Graph Representation

= Sparse graph (|E| much smaller than |V|2):
= Adjacency list representation.

= Dense graph:
= Adjacency matrix.

= For weighted graphs (V,E,w): weighted
adjacency list/matrix.

11

1 if (v,v,)EE

0 otherwise

)
(=)
2>
1
|<:c:<:»—<:|Ar
i Y e > T
— O O =~ O
— o ©O o o

@ @ |V|? entries

0
1
1
1
0

24 IV

Figure 10.2 An undirected graph and its adjacency matrix representation.

Undirected graph = symmetric adjacency matrix.

12

|IV|+|E| entries

Q vi T 2
2 | 3 5
Q—C T3
4 5
° e v 5 2 3 4

Figure 10.3 An undirected graph and its adjacency list representation.

13

Minimum Spanning Tree

= We consider undirected graphs.

= Spanning tree of (V,E) = sub-graph
= being a tree and
= containing all vertices V.

= Minimum spanning tree of (V,E,w) =
spanning tree with minimum weight.

= Example: minimum length of cable to
connect a set of computers.

14

02-05-2011

Figure 10.4 An undirected graph and its minimum spanning tree.

MVP'11 - Aalborg University

15

Prim’s Algorithm

= Greedy algorithm:
= Select a vertex.

= Choose a new vertex and edge guaranteed to
be in a spanning tree of minimum cost.

= Continue until all vertices are selected.

16

1. procedure PRIM_MST(V, E, w, r)

2 begin

3 Ve .= A{r}; Vertices of minimum spanning tree.
4 d[r] :=0;

5. forallv e (V —Vr) do Weights from V- to V.
6 if edge (7, v) exists set d[v] := w(r, v);

7 else set d[v] := oo;

8 while V'7 =V do

9. begin

10. select find a vertex u such that d[u] := min{d[v]|lv € (V — V)};

11. add Ve .=V Ulu};

12. update for all v € (V.— Vr) do

13. d[v] := mm{d[v], w(u, v)};

14. endwhile

15. end PRIM_MST

Algorithm 10.1 Prim’s sequential minimum spanning tree algorithm.

17

a) Original graph
(a) Original grap a7
a
b
C
d
e
A
(b) After the first edge has
been selected df]
a
b
C
d

a

b

C

d

e

3

'Nggw»—-o',_

23 ~wo -~

S

8.—l\)omw

B o~ Q

wnw ok~ —Q3 R

owg 3w [B]w

=)

lmgng—olHQ

23 —~w» o~

8HNomw

B o —~Q

»n ok~ — Q3 R

owgggw 8]«

(b) After the first edge has
been selected

df]

UL o &K

(c) After the second edge
has been selected

df]

UL o & Q

a

b

C

d

e

'wggwp—o'.—

23 — o~

S

8_‘t\)ou]w

8#—0[\)»—‘8

»nw o~ — Q3 R
Iom888wl8 -

=)

'wggwr—ol_Q

28 — o~

8.—1\)0&/1(»

A o~

wn o s~~~ QR
owg g w [7]w

~[@] ' m 22 8wo ~[@] w22 8wo
Ol <« B & — < o wv S - B & — < ownm
S|~ B — o < S|~ B — o < R
Sl oo — R Slal owvwo a— R
<lo] ~ow-13832 <lo] —ow~-283
a1_013mm2_ al_013ww2_
W TR 0T VN W IR OT VN

L
O]
=
en
g
=
=
<
o,
w2

(c) After the second edge
has been selected

=
-
£
k=
E
'S
k=
-~
~
o
N

Prim’s Algorithm

= Complexity O (n?2).
= Cost of the minimum spanning tree: 2 d[v]
Vel

= How to parallelize?
= Iterative algorithm.
= Any d[v] may change after every loop.
= But possible to run each iteration in parallel.

21

il-D Block Mapping

d[1..n]

Processors

Ty

0

| N

(a)

P processes
n vertices

n/p vertices per process

(b)

22

iParaIIeI Prim’s Algorithm

1-D block partitioning: V. per P..
For each iteration:
P. computes a local min d.[u].
All-to-one reduction to P, to compute the global min.
One-to-all broadcast of u.
Local updates of d[v].

Every process needs a column of the adjacency
matrix to compute the update.
© (n4/p) space per process.

23

Analysis

= The cost to select the minimum entry is O
(n/p + log p).

= The cost of a broadcast is O(log p).

= The cost of local update of the d vector is

O(n/p).

= The parallel run-time per iteration is
O(n/p + log p).

= The total parallel time (n iterations) is
given by O(n¢/p + n log p).

24

Analysis

= Efficiency = Speedup/# of processes:
E=S/p=1/(1+0O((p logp)/n).
= Maximal degree of concurrency = n.

= TO be cost-optimal we can only use up to
nflogn processes. ~ Max at 1°/p =0 (n log p),

with bound p=0(n
= Not very scalable. p=0(n)

02-05-2011 MVP'11 - Aalborg University 25

Single-Source Shortest Paths:
iDijkstra’s Algorithm

= For (V,E,w), find the shortest paths from a
vertex to all other vertices.

= Shortest path=minimum weight path.

= Algorithm for directed & undirected with non
negative weights.

= Similar to Prim’s algorithm.

= Prim: store d[u] minimum cost edge
connecting a vertex of V; to u.

= Dijkstra: store |[[u] minimum cost to reach u
from s by a path,in, V. .

Parallel formulation: Same as Prim’s algorithm.

A A

p—t ek ke \D
Y=o

procedure DIJKSTRA_SINGLE_SOURCE_SP(V, £, w, s)
begin
Vi = {s};
forallve (V —T7r)do
if (s, v) exists set /[v] := w(s, v);
else set /[v] := o0;
while I'7 = V do

begin
find a vertex v such that /[u] := mm{/[v]|v € (V — V71)};
Ve = Vr Ul{ul;

forallve (V —TVyr)do
[[v] := mn{/[v], [[u] + w(u, v)};
endwhile
end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 10.2 Dijkstra’s sequential single-source shortest paths algorithm.

iAII-Pairs Shortest Paths

= For (V,E,w), find the shortest paths
between all pairs of vertices.

= Dijkstra’s algorithm: Execute the single-source
algorithm for n vertices — 0O (n3).

= Floyd’s algorithm.

28

All-Pairs Shortest Paths —
Dijkstra — Parallel Formulation

= Source-partitioned formulation: Each

pr pute
th¢Up to n processes. Solve in O(n?).

= No communication, E=1,

out maximal degree

of concurrency = n. Poor scalability.
= Source-parallel formulation (p>n):

»_Partition the nracesses (n/n nrocesses/subset),
Up to n? processes, né/logn for cost-optimal,
in which case solve in © (n logn).

« In parallel: n single-source problems.

29

Floyd’s Algorithm

= For any pair of vertices v;, v; € V, consider
all paths from v, to v; whose intermediate
vertices belong to the set {v;,v,,...,V}.

= Let p;;(9 (of weight d,) be the minimum-
weight path among them.

30

‘-LFond’s Algorithm

s If vertex v, is not in the shortest path from
v, to v;, then p, (0 = p; D),

p, (9 =p, (D

31

iFond’s Algorithm

= If v is in p;), then we can break p; ;)
into two paths - one from v; to v, and one
from v, to v, . Each of these paths uses
vertices from {vy,V5,...,Vi.1}-

P; j(k)
d, 9=, (D+d, (D

32

Floyd’s Algorithm

= Recurrence equation:

rW(Vl-,Vj) ifk:()
min(d, a4 +dl) k=1

= Length of shortest path from v, to v, = d,
(n), Solution set = a matrix.

(k) _
di,j = 4

33

iFond’s Algorithm

procedure FLOYD_ALL_PAIRS_SP(A4)
begin
DY = 4;

fork:=1ton do
fori :=1ton do
for j :=1ton do

L,]
end FLOYD_ALL_PAIRS_SP

© N Nk W=

How to parallelize?

© (n3j

Also works in place.

k) . _ . (k—1) (k—1) (k—1) .
i) = min (@70, a7+ @)

>

Algorithm 10.3 Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs
shortest paths of the graph G = (V, E) with adjacency matrix 4.

34

iParaIIeI Formulation

= 2-D block mapping:

= Each of the p processes has a sub-matrix (n/
Vvp)? and computes its DK,

= Processes need access to the corresponding k
row and column of D-1),

= kth iteration: Each process containing part of
the kt" row sends it to the other processes in
the same column. Same for column broadcast
ONn rows.

35

Jp
\’/7]9 (L, [(1,2)

e : © n/vp
"""""""" —1 1,(j—1)-".
_______________ (7)J +1,()¢)

i) ; R
__________________________ '.-.n.,. n
l\/P"] JP

(a) (b)

Figure 10.7 (a) Matrix D distributed by 2-D block mapping into ./p x ./p subblocks, and (b)
the subblock of D) assigned to process P; ;.

02-05-2011 MVP'11 - Aalborg University 36

Communication

k column k column

k TOW

(a) (b)

Figure 10.8 (a) Communication patterns used in the 2-D block mapping. When computing d,.("(].),
information must be sent to the highlighted process from two other processes along the same row
and column. (b) The row and column of ,/p processes that contain the k™ row and column send
them along process columns and rows.

37

Parallel Algorithm

1. procedure FLOYD_2DBLOCK(D®)

2. begin

3. for £ := 1ton do

4. begin

5. each process P ; that has a segment of the k™ row of D*—D:
broadcasts 1t to the P ; processes;

6. each process P; ; that has a segment of the k™ column of D*=D:
broadcasts it to the P; , processes;

7. each process waits to receive the needed segments;

8. each process P; ; computes 1ts part of the D™ matrix;

9. end

10. end FLOYD_2DBLOCK

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. P, ; denotes all the
processes in the 7 column, and P; . denotes all the processes in the i row. The matrix D is
the adjacency matrix.

38

iAnaIySB
computation communication

pr——— rm— —

§ n 3) '7?2
I'p= © (—) + © (— log p) :
P VP

= E=1/(1+ 0O ((vp logp)/n).

= Cost optimal if up to O((n/logn)?)
processes.

= Possible to improve: pipelined 2-D block
mapping: No broadcast, send to neighbor.
Communication: ©(n), up to O(n?)
processes & cost optimal.

39

All-Pairs Shortest Paths: Matrix
iMuItipIication Based Algorithm

= Multiplication of the weighted adjacency
matrix with itself — except that we replace
multiplications by additions, and additions
by minimizations.

= The result is @ matrix that contains
shortest paths of length 2 between any
pair of nodes.

s It follows that A” contains all shortest
paths.

40

41

3565\
3

DO 00 00 00 o0 oo oo 0 oo
4

S OIS OIS GG SR S SR 1L O
oo oo oo oo oo oo 10
5

$

o

—

"8 R8mgge

e A

S I A e
4 2o ¥

o0 OO OO OO

a0 oo oo 0

Q

o
4
e
4
o
4

Serial algorithm not

optimal but we can
, |use rP/logn processes

to run in O(log2n).

A

<

—~
244880484 w
888 Egm—o~ ©
24N 3o 4y
— 288228
R =T I
g—o 384387

e

s

(gl

o™

6o 44484
© 4484888
IR IR IR IR I

2 3 o0 00 00 00 00 OC \

0 2 3 4

(0
(

~xoo 01

i

=T

1

iTransitive Closure

= Find out if any two vertices are connected.
= G*=(V,E*) where E*={(v,,v;)[3 a path
from v; to v; in G}.

<9 >

o O

42

iTransitive Closure
= Start with D=(a, ; or).

1)

= Apply one all-pairs shortest paths

algorithm.

= Solution:

*

d.

l,]

= <

fo's l]p di,j = OO

I ifd >00ri=j

43

