
Graph Algorithms

Alexandre David
1.2.05

adavid@cs.aau.dk

02-05-2011 MVP'11 - Aalborg University 2

Today
n  Recall on graphs.
n  Minimum spanning tree (Prim’s algorithm).
n  Single-source shortest paths (Dijkstra’s

algorithm).
n  All-pair shortest paths (Floyd’s algorithm).
n  Connected components.

02-05-2011 MVP'11 - Aalborg University 3

Graphs – Definition
n  A graph is a pair (V,E)

n  V finite set of vertices.
n  E finite set of edges.

e ∈ E is a pair (u,v) of vertices.
Ordered pair → directed graph.
Unordered pair → undirected graph.

02-05-2011 MVP'11 - Aalborg University 4

edge

vertex

V=
E=

V=
E=

02-05-2011 MVP'11 - Aalborg University 5

Graphs – Edges
n  Directed graph:

n  (u,v) ∈ E is incident from u and incident to v.
n  (u,v) ∈ E : vertex v is adjacent to u.

n  Undirected graph:
n  (u,v) ∈ E is incident on u and v.
n  (u,v) ∈ E : vertices u and v are adjacent to

each other.

02-05-2011 MVP'11 - Aalborg University 6

4 adjacent to 6

02-05-2011 MVP'11 - Aalborg University 7

Graphs – Paths
n  A path is a sequence of adjacent vertices.

n  Length of a path = number of edges.
n  Path from v to u ⇒ u is reachable from v.
n  Simple path: All vertices are distinct.
n  A path is a cycle if its starting and ending

vertices are the same.
n  Simple cycle: All intermediate vertices are

distinct.

02-05-2011 MVP'11 - Aalborg University 8

Simple path:
Simple cycle:
Non simple cycle:

Simple path:
Simple cycle:
Non simple cycle:

02-05-2011 MVP'11 - Aalborg University 9

Graphs
n  Connected graph: ∃ path between any

pair.
n  G’=(V’,E’) sub-graph of G=(V,E) if V’⊆V

and E’⊆E.
n  Sub-graph of G induced by V’: Take all

edges of E connecting vertices of V’⊆V.
n  Complete graph: Each pair of vertices

adjacent.
n  Tree: connected acyclic graph.

02-05-2011 MVP'11 - Aalborg University 10

Sub-graph:
Induced sub-graph:

02-05-2011 MVP'11 - Aalborg University 11

Graph Representation
n  Sparse graph (|E| much smaller than |V|2):

n  Adjacency list representation.

n  Dense graph:
n  Adjacency matrix.

n  For weighted graphs (V,E,w): weighted
adjacency list/matrix.

02-05-2011 MVP'11 - Aalborg University 12

⎩
⎨
⎧ ∈

=
otherwise

Evvif
a ji

ji 0

),(1
,

Undirected graph ⇒ symmetric adjacency matrix.

|V|

|V|2 entries

02-05-2011 MVP'11 - Aalborg University 13

|V|

|V|+|E| entries

02-05-2011 MVP'11 - Aalborg University 14

Minimum Spanning Tree
n  We consider undirected graphs.
n  Spanning tree of (V,E) = sub-graph

n  being a tree and
n  containing all vertices V.

n  Minimum spanning tree of (V,E,w) =
spanning tree with minimum weight.

n  Example: minimum length of cable to
connect a set of computers.

02-05-2011 MVP'11 - Aalborg University 15

Spanning Trees

02-05-2011 MVP'11 - Aalborg University 16

Prim’s Algorithm
n  Greedy algorithm:

n  Select a vertex.
n  Choose a new vertex and edge guaranteed to

be in a spanning tree of minimum cost.
n  Continue until all vertices are selected.

02-05-2011 MVP'11 - Aalborg University 17

Vertices of minimum spanning tree.

Weights from VT to V.

select

add

update

02-05-2011 MVP'11 - Aalborg University 18

02-05-2011 MVP'11 - Aalborg University 19

02-05-2011 MVP'11 - Aalborg University 20

02-05-2011 MVP'11 - Aalborg University 21

Prim’s Algorithm
n  Complexity Θ(n2).
n  Cost of the minimum spanning tree:

n  How to parallelize?
n  Iterative algorithm.
n  Any d[v] may change after every loop.
n  But possible to run each iteration in parallel.

∑
∈Vv

vd][

02-05-2011 MVP'11 - Aalborg University 22

1-D Block Mapping

p processes
n vertices
n/p vertices per process

02-05-2011 MVP'11 - Aalborg University 23

Parallel Prim’s Algorithm

1-D block partitioning: Vi per Pi.
For each iteration:
 Pi computes a local min di[u].
 All-to-one reduction to P0 to compute the global min.
 One-to-all broadcast of u.
 Local updates of d[v].

Every process needs a column of the adjacency
matrix to compute the update.
Θ(n2/p) space per process.

02-05-2011 MVP'11 - Aalborg University 24

Analysis
n  The cost to select the minimum entry is O

(n/p + log p).
n  The cost of a broadcast is O(log p).
n  The cost of local update of the d vector is

O(n/p).
n  The parallel run-time per iteration is

O(n/p + log p).
n  The total parallel time (n iterations) is

given by O(n2/p + n log p).

02-05-2011 MVP'11 - Aalborg University 25

Analysis
n  Efficiency = Speedup/# of processes:

E=S/p=1/(1+Θ((p logp)/n).
n  Maximal degree of concurrency = n.
n  To be cost-optimal we can only use up to

n/logn processes.
n  Not very scalable.

max at n2/p =Θ(n log p),
with bound p=O(n)

02-05-2011 MVP'11 - Aalborg University 26

Single-Source Shortest Paths:
Dijkstra’s Algorithm

n  For (V,E,w), find the shortest paths from a
vertex to all other vertices.
n  Shortest path=minimum weight path.
n  Algorithm for directed & undirected with non

negative weights.

n  Similar to Prim’s algorithm.
n  Prim: store d[u] minimum cost edge

connecting a vertex of VT to u.
n  Dijkstra: store l[u] minimum cost to reach u

from s by a path in VT.

02-05-2011 MVP'11 - Aalborg University 27

Parallel formulation: Same as Prim’s algorithm.

02-05-2011 MVP'11 - Aalborg University 28

All-Pairs Shortest Paths
n  For (V,E,w), find the shortest paths

between all pairs of vertices.
n  Dijkstra’s algorithm: Execute the single-source

algorithm for n vertices → Θ(n3).
n  Floyd’s algorithm.

02-05-2011 MVP'11 - Aalborg University 29

All-Pairs Shortest Paths –
Dijkstra – Parallel Formulation

n  Source-partitioned formulation: Each
process has a set of vertices and compute
their shortest paths.
n  No communication, E=1, but maximal degree

of concurrency = n. Poor scalability.

n  Source-parallel formulation (p>n):
n  Partition the processes (p/n processes/subset),

each partition solves one single-source
problem (in parallel).

n  In parallel: n single-source problems.

Up to n processes. Solve in Θ(n2).

Up to n2 processes, n2/ logn for cost-optimal,
in which case solve in Θ(n logn).

02-05-2011 MVP'11 - Aalborg University 30

Floyd’s Algorithm
n  For any pair of vertices vi, vj ∈ V, consider

all paths from vi to vj whose intermediate
vertices belong to the set {v1,v2,…,vk}.

n  Let pi,j
(k) (of weight di,j

(k)) be the minimum-
weight path among them.

1

2

3

5

4

6

7

8

k i

j
pi,j

(k)

02-05-2011 MVP'11 - Aalborg University 31

Floyd’s Algorithm
n  If vertex vk is not in the shortest path from

vi to vj, then pi,j
(k) = pi,j

(k-1).

1

2

3

5

4

6

7

8

k
i

j

pi,j
(k)

k-1

=pi,j
(k-1)

02-05-2011 MVP'11 - Aalborg University 32

Floyd’s Algorithm
n  If vk is in pi,j

(k), then we can break pi,j
(k)

into two paths - one from vi to vk and one
from vk to vj . Each of these paths uses
vertices from {v1,v2,…,vk-1}.

1

2

3

5

4

6

7

8

k
i

j
pi,j

(k)

di,j
(k)=di,k

(k-1)+dk,j
(k-1)

02-05-2011 MVP'11 - Aalborg University 33

Floyd’s Algorithm
n  Recurrence equation:

n  Length of shortest path from vi to vj = di,j
(n). Solution set = a matrix.

() ⎭
⎬
⎫

≥

=

⎪⎩

⎪
⎨
⎧

+
=

−−− 1
0

,min

),(
)1(

,
)1(

,
)1(

,

)(
, kif

kif
ddd

vvw
d k

jk
k
ki

k
ji

jik
ji

02-05-2011 MVP'11 - Aalborg University 34

Floyd’s Algorithm

Θ(n3)

Also works in place.

How to parallelize?

02-05-2011 MVP'11 - Aalborg University 35

Parallel Formulation
n  2-D block mapping:

n  Each of the p processes has a sub-matrix (n/
√p)2 and computes its D(k).

n  Processes need access to the corresponding k
row and column of D(k-1).

n  kth iteration: Each process containing part of
the kth row sends it to the other processes in
the same column. Same for column broadcast
on rows.

02-05-2011 MVP'11 - Aalborg University 36

2-D Mapping

n/√p

02-05-2011 MVP'11 - Aalborg University 37

Communication

02-05-2011 MVP'11 - Aalborg University 38

Parallel Algorithm

02-05-2011 MVP'11 - Aalborg University 39

Analysis

n  E=1/(1+Θ((√p logp)/n).
n  Cost optimal if up to O((n/ logn)2)

processes.
n  Possible to improve: pipelined 2-D block

mapping: No broadcast, send to neighbor.
Communication: Θ(n), up to O(n2)
processes & cost optimal.

02-05-2011 MVP'11 - Aalborg University 40

All-Pairs Shortest Paths: Matrix
Multiplication Based Algorithm

n  Multiplication of the weighted adjacency
matrix with itself – except that we replace
multiplications by additions, and additions
by minimizations.

n  The result is a matrix that contains
shortest paths of length 2 between any
pair of nodes.

n  It follows that An contains all shortest
paths.

02-05-2011 MVP'11 - Aalborg University 41

Serial algorithm not
optimal but we can
use n3/logn processes
to run in O(log2n).

02-05-2011 MVP'11 - Aalborg University 42

Transitive Closure
n  Find out if any two vertices are connected.
n  G*=(V,E*) where E*={(vi,vj)|∃ a path

from vi to vj in G}.

02-05-2011 MVP'11 - Aalborg University 43

Transitive Closure
n  Start with D=(ai,j or ∞).
n  Apply one all-pairs shortest paths

algorithm.
n  Solution:

⎪⎩

⎪
⎨
⎧

=>

∞=∞
=

jiordif
dif

a
ji

ji
ji 01 ,

,*
,

