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Today 
n  Recall on graphs. 
n  Minimum spanning tree (Prim’s algorithm). 
n  Single-source shortest paths (Dijkstra’s 

algorithm). 
n  All-pair shortest paths (Floyd’s algorithm). 
n  Connected components. 
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Graphs – Definition 
n  A graph is a pair (V,E ) 

n  V  finite set of vertices. 
n  E  finite set of edges. 

e ∈ E  is a pair (u,v ) of vertices. 
Ordered pair → directed graph. 
Unordered pair → undirected graph. 
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Graphs – Edges 
n  Directed graph: 

n  (u,v ) ∈ E  is incident from u and incident to v. 
n  (u,v ) ∈ E : vertex v is adjacent to u. 

n  Undirected graph: 
n  (u,v ) ∈ E  is incident on u and v. 
n  (u,v ) ∈ E : vertices u and v are adjacent to 

each other. 
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4 adjacent to 6 
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Graphs – Paths 
n  A path is a sequence of adjacent vertices. 

n  Length of a path = number of edges. 
n  Path from v to u ⇒ u is reachable from v. 
n  Simple path: All vertices are distinct. 
n  A path is a cycle if its starting and ending 

vertices are the same. 
n  Simple cycle: All intermediate vertices are 

distinct. 
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Simple path: 
Simple cycle: 
Non simple cycle: 

Simple path: 
Simple cycle: 
Non simple cycle: 
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Graphs 
n  Connected graph: ∃ path between any 

pair. 
n  G’=(V’,E’) sub-graph of G=(V,E) if V’⊆V 

and E’⊆E. 
n  Sub-graph of G induced by V’: Take all 

edges of E connecting vertices of V’⊆V. 
n  Complete graph: Each pair of vertices 

adjacent. 
n  Tree: connected acyclic graph. 
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Sub-graph: 
Induced sub-graph: 
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Graph Representation 
n  Sparse graph (|E| much smaller than |V|2): 

n  Adjacency list representation. 

n  Dense graph: 
n  Adjacency matrix. 

n  For weighted graphs (V,E,w): weighted 
adjacency list/matrix. 
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Undirected graph ⇒ symmetric adjacency matrix. 

|V| 

|V|2 entries 
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|V| 

|V|+|E| entries 
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Minimum Spanning Tree 
n  We consider undirected graphs. 
n  Spanning tree of (V,E) = sub-graph 

n  being a tree and 
n  containing all vertices V. 

n  Minimum spanning tree of (V,E,w) = 
spanning tree with minimum weight. 

n  Example: minimum length of cable to 
connect a set of computers. 
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Spanning Trees 
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Prim’s Algorithm 
n  Greedy algorithm: 

n  Select a vertex. 
n  Choose a new vertex and edge guaranteed to 

be in a spanning tree of minimum cost. 
n  Continue until all vertices are selected. 
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Vertices of minimum spanning tree. 

 
Weights from VT to V. 

select 

add 

update 
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Prim’s Algorithm 
n  Complexity Θ(n2). 
n  Cost of the minimum spanning tree: 

n  How to parallelize? 
n  Iterative algorithm. 
n  Any d[v] may change after every loop. 
n  But possible to run each iteration in parallel. 

∑
∈Vv

vd ][
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1-D Block Mapping 

p processes 
n vertices 
n/p vertices per process 



02-05-2011 MVP'11 - Aalborg University 23 

Parallel Prim’s Algorithm 

1-D block partitioning: Vi per Pi. 
For each iteration: 
    Pi computes a local min di[u]. 
    All-to-one reduction to P0 to compute the global min. 
    One-to-all broadcast of u. 
    Local updates of d[v]. 

Every process needs a column of the adjacency 
matrix to compute the update. 
Θ(n2/p) space per process. 
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Analysis 
n  The cost to select the minimum entry is O

(n/p + log p).  
n  The cost of a broadcast is O(log p).  
n  The cost of local update of the d vector is 

O(n/p).  
n  The parallel run-time per iteration is 

O(n/p + log p).  
n  The total parallel time (n iterations) is 

given by O(n2/p + n log p). 
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Analysis 
n  Efficiency = Speedup/# of processes: 

E=S/p=1/(1+Θ((p logp)/n). 
n  Maximal degree of concurrency = n. 
n  To be cost-optimal we can only use up to 

n/logn processes. 
n  Not very scalable. 

max at n2/p =Θ(n log p), 
with bound p=O(n) 
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Single-Source Shortest Paths: 
Dijkstra’s Algorithm 

n  For (V,E,w), find the shortest paths from a 
vertex to all other vertices. 
n  Shortest path=minimum weight path. 
n  Algorithm for directed & undirected with non 

negative weights. 

n  Similar to Prim’s algorithm. 
n  Prim: store d[u] minimum cost edge 

connecting a vertex of VT to u. 
n  Dijkstra: store l[u] minimum cost to reach u 

from s by a path in VT. 
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Parallel formulation: Same as Prim’s algorithm. 
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All-Pairs Shortest Paths 
n  For (V,E,w), find the shortest paths 

between all pairs of vertices. 
n  Dijkstra’s algorithm: Execute the single-source 

algorithm for n vertices → Θ(n3). 
n  Floyd’s algorithm. 
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All-Pairs Shortest Paths – 
Dijkstra – Parallel Formulation 

n  Source-partitioned formulation: Each 
process has a set of vertices and compute 
their shortest paths. 
n  No communication, E=1, but maximal degree 

of concurrency = n. Poor scalability. 

n  Source-parallel formulation (p>n): 
n  Partition the processes (p/n processes/subset), 

each partition solves one single-source 
problem (in parallel). 

n  In parallel: n single-source problems. 

Up to n processes. Solve in Θ(n2 ). 

Up to n2 processes, n2/ logn for cost-optimal, 
in which case solve in Θ(n logn). 
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Floyd’s Algorithm 
n  For any pair of vertices vi, vj ∈ V, consider 

all paths from vi to vj whose intermediate 
vertices belong to the set {v1,v2,…,vk}. 

n  Let pi,j
(k) (of weight di,j

(k)) be the minimum-
weight path among them. 
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Floyd’s Algorithm 
n  If vertex vk is not in the shortest path from 

vi to vj, then pi,j
(k) = pi,j

(k-1). 
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Floyd’s Algorithm 
n  If vk is in pi,j

(k), then we can break pi,j
(k) 

into two paths - one from vi to vk and one 
from vk to vj . Each of these paths uses 
vertices from {v1,v2,…,vk-1}.  
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Floyd’s Algorithm 
n  Recurrence equation: 

n  Length of shortest path from vi to vj = di,j
(n). Solution set = a matrix. 
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Floyd’s Algorithm 

Θ(n3) 

Also works in place. 

How to parallelize? 
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Parallel Formulation 
n  2-D block mapping: 

n  Each of the p processes has a sub-matrix (n/
√p)2 and computes its D(k). 

n  Processes need access to the corresponding k 
row and column of D(k-1). 

n  kth iteration: Each process containing part of 
the kth row sends it to the other processes in 
the same column. Same for column broadcast 
on rows. 
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2-D Mapping 

n/√p 
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Communication 
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Parallel Algorithm 
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Analysis 

n  E=1/(1+Θ((√p logp)/n). 
n  Cost optimal if up to O((n/ logn)2) 

processes. 
n  Possible to improve: pipelined 2-D block 

mapping: No broadcast, send to neighbor. 
Communication: Θ(n), up to O(n2) 
processes & cost optimal. 
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All-Pairs Shortest Paths: Matrix 
Multiplication Based Algorithm 

n  Multiplication of the weighted adjacency 
matrix with itself – except that we replace  
multiplications by additions, and additions 
by minimizations. 

n  The result is a matrix that contains 
shortest paths of length 2 between any 
pair of nodes.  

n  It follows that An contains all shortest 
paths. 
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Serial algorithm not 
optimal but we can 
use n3/logn processes 
to run in O(log2n). 



02-05-2011 MVP'11 - Aalborg University 42 

Transitive Closure 
n  Find out if any two vertices are connected. 
n  G*=(V,E*) where E*={(vi,vj)|∃ a path 

from vi to vj in G}. 



02-05-2011 MVP'11 - Aalborg University 43 

Transitive Closure 
n  Start with D=(ai,j or ∞). 
n  Apply one all-pairs shortest paths 

algorithm. 
n  Solution: 
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