
Distributed Termination 
Detection 

Alexandre David 
1.2.05 

adavid@cs.aau.dk 



02-05-2011 MVP'11 - Aalborg University 2 

Termination Detection: The Model 

n  A process is either active or inactive. 
n  An inactive process may not send 

messages. 
n  An active process may turn inactive. 
n  An inactive process stays inactive unless it 

receives a message. 

n  Find out when we can terminate. 



02-05-2011 MVP'11 - Aalborg University 3 

What is the Problem? 
n  A message can turn an inactive process 

active. 
n  You don’t know if an inactive process will be 

turned active later… 

n  Find out whether all processes are inactive 
and whether there are no more messages in 
the system. 
n  And avoid races, like message sent not yet 

received… 



02-05-2011 MVP'11 - Aalborg University 4 

Simple Token Algorithm 

Processes arranged in a ring. 

Process 1 inserts a token that will travel around back to 1. 
The token leaves a process only if it’s inactive. 
Process 1 determines when to terminate. 

That does not work here: 
•  A process may become active after having sent the token. 
•  Who sent that message? 
•  Fix this: Dijkstra. 



02-05-2011 MVP'11 - Aalborg University 5 

Dijkstra’s Token Termination Detection 
Algorithm - Idea 

n  All processes are initially colored 
white. 

n  A process i sending a message to 
process j with j < i is a suspect 
for reactivating a process ⇒ It 
turns black. 

n  If a black process receives a 
token, it colors it black. 



02-05-2011 MVP'11 - Aalborg University 6 

Dijkstra’s Token Termination Detection 
Algorithm 

1)  When P1 turns inactive, it turns white 
and sends a white token to P2. 

2)  If Pi sends a message to Pj and 
j < i then Pi turns black. 

3)  If Pi has the token and is idle, it passes 
the token. The token becomes black if 
Pi is black. 

4)  After passing tokens, processes 
become white. 

5)  The algorithm terminates when P1 
receives a white token and it is idle. 



02-05-2011 MVP'11 - Aalborg University 7 

Cost 
n  The token consumes O(P) in time. 

n  P1 may become active again before getting back 
the token. 

n  For a small number of processes, algorithm is 
acceptable. 

n  For large numbers of processes, this becomes a 
significant overhead. 

n  So far so good? 

? 



02-05-2011 MVP'11 - Aalborg University 8 

What Can Go Wrong Will Go Wrong 

n  What happens if Pi sends a message to Pj, j > i? 
n  Pi may be white when it receives a white token later and 

forwards a white token. Token faster than the message 
- race. 

n  Messages must be delivered in order for the protocol to 
work! 

n  MPI guarantees that messages are non-
overtaking: M1 sent before M2 from the same 
source will arrive before M2 at the same 
destination. 
n  But no in-order guarantee! 
n  Not good enough! 



02-05-2011 MVP'11 - Aalborg University 9 

Dijkstra-Scholten Algorithm 
1)  Every process keeps a message count. 

1)  Increment the count for received messages. 
2)  Decrement the count for sent messages. 

2)  P1 is the initiator and sends a white token with a 
count=0. 

3)  If Pi sends or receive messages, it turns black. 
4)  If Pi receives the token, 

1)  it keeps it while it is active, 
2)  if it is black, the token becomes black, 
3)  when it is inactive, it forwards the token with its message count 

added and turns white. 

5)  If P1 is white, it receives a white token, and the message 
count+its count == 0, then P1 has detected termination. 



02-05-2011 MVP'11 - Aalborg University 10 

Getting Back the Results 
n  When P1 has detected termination, it can act 

as a master and 
n  send a terminate message to everyone, 
n  collect the results and print them, 

n  Collecting the results could be done in parallel too! 

n  send a shutdown message to everyone, 
n  stop. 


