
Model-Checker Case-Study

Alexandre David
1.2.05

adavid@cs.aau.dk

11-04-2011 MVP'11 - Aalborg University 2

The Problem
n  Application domain: Searching, planning, AI,

scheduling, formal verification…
n  Idea:

n  You make a model of a system.
Description language = automaton/state-
machine.

n  Your system changes its state according to a
transition relation = set of rules that tell how
the system may evolve.

n  Reachability problem: Given an initial state, how
to reach a goal state?

n  Technique: Explore the state-space.

11-04-2011 MVP'11 - Aalborg University 3

Definitions
n  A state is the snapshot configuration of a

system.
n  The system changes state by taking

transitions. The rules are given by a
transition relation.

n  The set of all states is called the state-space.
n  A state S is reachable if there exists a

sequence of transitions from the initial state
to S.
n  This sequence of transition is called trace, path,

or witness.

11-04-2011 MVP'11 - Aalborg University 4

Is the target
state reachable?
If yes, how?

State-Space Exploration

11-04-2011 MVP'11 - Aalborg University 5

Exploration Algorithm

S
(state,color)

not explored
(waiting)
explored
(visited)

1: Pick white.
2: Mark it black.
3: Generate its successor states.
4: Add them to S.
5: Mark them white.
6: Repeat until find the goal or
 no more white state to pick.

11-04-2011 MVP'11 - Aalborg University 6

Correctness
n  The algorithm explores all possible

reachable states.
n  It will terminate if the state-space is finite.

This is our case.
n  When it terminates, it proves that a state is

reachable or not.

n  Problem: State-space explosion.

11-04-2011 MVP'11 - Aalborg University 7

Technicalities

n  How to represent S for efficient look-up?
n  Hash table.

n  How to pick-up the next state to be
explored?
n  FIFO: Breadth-first-search.
n  LIFO: Depth-first search.
n  Priority queue: Guided search with heuristics.

11-04-2011 MVP'11 - Aalborg University 8

Search Orderings

Breadth-first-search
(BFS)

1

2 3 4

5 6 7 8 9

10 11 12 13 14

Depth-first-search
(DFS)

1

2

3

4 5

6

7

8

9

10

11

12

13

14

Gives shortest
path but may
be more expensive
than heuristics or
random search.

11-04-2011 MVP'11 - Aalborg University 9

Classification
n  Dynamic partitioning.
n  Dynamic load balancing.
n  Performance anomalies expected.
n  Correctness issues w.r.t. search orderings.

11-04-2011 MVP'11 - Aalborg University 10

Basic Problems
n  Where are the data?

n  Find the dataflow – data & functions.

n  Which computations can be done in parallel?
n  Identify critical sections.
n  What data can be shared?
n  How to solve load balancing?
n  How to detect termination?

11-04-2011 MVP'11 - Aalborg University 11

Simplified Dataflow

state set waiting queue Data
(states)

compute

insert

state

11-04-2011 MVP'11 - Aalborg University 12

Which Computations Can Be Done in Parallel?

n  All functions.
n  Critical sections:

n  read & write to shared data.

state set waiting queue

compute

insert

state

11-04-2011 MVP'11 - Aalborg University 13

Shared Data

n  Queue & state-set.
n  Evenly distributed among processes.
n  Load balancing through (universal) hash.

Owner computes rule.

state set waiting queue

compute

insert

state

11-04-2011 MVP'11 - Aalborg University 14

Termination Issues
n  How to detect it is finished?

n  Load dynamic.
n  Work dynamic.
n  Quiescence now does not mean finished.

n  How would you do it?

11-04-2011 MVP'11 - Aalborg University 15

Termination Issues
n  Detect that all processes are idle.

n  If process A is idle but B is working: no.
n  If B sends something to A and then becomes idle: no.

n  All processes idle and no data in transit: yes.

n  Barrier protocol – principle:
n  Processes block on empty queues,
n  the last process detects termination.
n  Race condition issues

n  pthreads: condition synchronization.
n  MPI: distributed token based protocol.

11-04-2011 MVP'11 - Aalborg University 16

PThreads – 1

state set waiting queue

compute

insert

state

compute

insert

state

compute

insert

state

Parallel computations.
Shared queue.
Shared state-set.

Problems?

11-04-2011 MVP'11 - Aalborg University 17

PThreads – 2

state set waiting queue

compute

insert

state

compute

insert

state

compute

insert

state

Parallel computations.
Shared + local queues.
Shared state-set.

Problems?

local queue local queue
local queue

11-04-2011 MVP'11 - Aalborg University 18

PThreads – 3

state set waiting queue

compute

insert

state

compute

insert

state

compute

insert

state

Parallel computations.
Shared queues.
Shared state-set.

Problems?

waiting queue
waiting queue

11-04-2011 MVP'11 - Aalborg University 19

PThreads – 4

state set waiting queue

compute

insert

state

compute

insert

state

compute

insert

state

Parallel computations.
Local + shared queues.
Shared state-set.

Problems?

waiting queue
waiting queue

local queue local queue local queue

11-04-2011 MVP'11 - Aalborg University 20

PThreads – 5

state set waiting queue

compute

insert

state

compute

insert

state

compute

insert

state

Parallel computations.
Local + shared queues.
Local state-sets.

Problems?

waiting queue
waiting queue

local queue local queue local queue

state set
state set

11-04-2011 MVP'11 - Aalborg University 21

Issues
n  Contention.
n  False sharing.

n  Data.
n  Locks!!!

All the threads will want to lock all the locks.

n  Detect termination! (overhead)
n  Solutions: tryLock, lock on hash entries.
n  Poor speedup, not efficient.
n  Alternative: non-blocking shared data-

structures!

