Future Directions in Parallel Computing

Alexandre David 1.2.05 adavid@cs.aau.dk

Attached Processors

- Specialized processors can be more powerful & space efficient than general purpose CPUs.
 - Off-load the work to attached co-processors.
 Old days: co-processor for 80286.
 - Asymmetric.
 - Specialized high parallel algorithms run on the co-processor.
 - FPGA GPU Cell architecture.

Attached Processors

GPU

GPGPU – recent effort.

- Tremendous performance, price/performance, and quick new generations.
- 10x flops, 10x bandwidth than CPU typical.
- GPU is specialized for graphics rendering
 - compute intensive
 - highly parallel task
 - many processing cores
 - highly data-parallel architecture, simplified logic, no issue such as reordering instructions, branch prediction, cache etc...

GPU vs. CPU Over Time

GT200

29-04-2011

MVP'11 - Aalborg University

29-04-2011

MVP'11 - Aalborg University

RV770 (Caution: AMD's Marketing)

Introducing the TeraScale graphics engine

	ATI Radeon™ HD 3800	ATI Radeon™ HD 4800	Difference				
Process	55nm	55nm	None				
Die Size	190mm ²	260mm ²	1.4x				
Transistors	666M	956M	1.4x				
4x AA	8	16	2x				
Z/Stencil	32	64	2x				
Texture	16	40	2.5x				
Shader	320	800	2.5x				
Bandwidth	72 GB/sec	115.2 GB/sec	1.6x				

RV770 (Caution: AMD's Marketing)

Terascale Graphics Engine

- 800 highly optimized stream processing units
- New SIMD core layout
- Optimized texture units
- New texture cache design
- New memory architecture
- Optimized render back-ends for faster anti-aliasing performance
- Enhanced geometry shader & tessellator performance

MVP'11 - Aalborg University

29-04-2011

RV770 (Caution: AMD's Marketing)

ATI Radeon™ HD 4800 Series Architecture

- 10 SIMD cores
 - Each with 80 32-bit Stream Processing Units (800 total)
- 40 Texture Units
- 115+ GB/sec GDDR5 memory interface

	ATI Radeon™ HD 3800	ATI Radeon™ HD 4800	Difference		
Die Size	190 mm ²	260 mm ²	1.4x		
Memory	72 GB/sec	115 GB/sec	1.6x		
AA Resolve	32	64	2x		
Z/Stencil	32	64	2x		
Texture	16	40	2.5x		
Shader	320	800	2.5x		

1			-
		n da	
	terrane terrane		
		raen libra and then an library and many	
	Texture	SIMD	
dina. J	Units	Cores	
		ting an ing an ing a	
		ren tital and tital and tital and there	
		an she at in a thin at in a	
1 . 14	ng Transferration.		Display

GPU

- Beginning: Only for graphics.
- Over time, more programmable with more registers, more code (shaders).
- Trend: more general purpose computing.
 - Double precision FPUs, integer operations.

CPU vs. GPU

		Control			Control				Control							
	ALU			ALU			ALU				ALU					
	Cache		Cache			Cache			Cache							
	DRAM															
	(a)															
Control	А	А	Α	А	А	А	А	А	А	Α	Α	А	А	А	А	A
Cache	Ŭ	U	Ŭ	U	U	U	U	U	Ŭ	Ŭ	Ŭ	Ŭ	U	U	U	U
	DRAM															
								(b))							

GPUs

- Computing cores: SIMD.
- Programming model (CUDA) close to C.
- Power: massively parallel floating-point computations.
 - Organize packs of threads (warp).
 - Schedule many (1000) threads at each cycle.

Cell Processor

- Designed for video games & multimedia applications.
- Architecture:
 - I PPE 64 bit PowerPC, dual-threaded.
 - 8 SPE, connected via element interconnect bus (EIB). Powerful SIMD processors.
 - EIB ~ 200GB/s.
 - SPE: no cache but local small memory (256kB) 128 bit SIMD RISC processor, vector operations.

29-04-2011

Grid Computing

Henrik's lecture

Transactional Memory

Idea: Memory behaves like database.

- Transactions ensure the 4 ACID properties:
- Atomicity all operations complete or none does.
- Consistency storage updated as if there is a serial ordering.
- Isolation effect of the transaction is equivalent to the effect of some isolated execution.
- Durability the changes persist.

A transaction is *committed* or *aborted*.

Transactions vs. Locks

- Deadlocks with locks. Not with transactions.
- Locks enforce sequential executions.
 Transactions offer more concurrency.
- Finer granularity with transactions.
- Locks do not compose well. Deadlock possible, priority inversion possible...
- Transactional memory difficult to implement.
 More in SPO course.

MapReduce

 Tool for searching huge data archives using a plug-in style framework.

Used by Google to compute PageRank.

- Scale critical (very big).
 - Tree with leaves = disks.
 - Computations produce tables of values.
 - Data streamed & filtered through a map function (output = key,value pairs).
 - The pairs are streamed to an aggregator reduce function.

MapReduce

Emerging Languages

- Chapel Cray
- Fortress Sun Microsystems
- X10 IBM