
Assessing the State of the Art 

Alexandre David 
1.2.05 

adavid@cs.aau.dk 



29-04-2011 MVP'11 - Aalborg University 2 

Important Properties 
n  Correctness 

n  much harder than sequential program 
n  P-independence: Same output on the same input 

regardless of the arrangement of processes. 
Try to remove sensitivity to interleavings. 

n  Global view languages – preserve P-independent 
program behavior. 

n  Local view languages – do not preserve it. 
n  Locks, send, receive – local view abstraction. 
n  forall loops, barrier, reduce, scans – global view 

abstraction. 



29-04-2011 MVP'11 - Aalborg University 3 

Important Properties 
n  Performance 

n  How much is enough? 
n  Little inherent parallelism → low speedup, good 

concurrency → good speedup. 
Concurrency → efficiency. 

n  Good locality good for caches, superlinear possible. 

n  Scalability 
n  Effect when number of processors increases? 
n  Compare with size of the problem. 

n  Portability 
n  Performance portability. CTA model. 



29-04-2011 MVP'11 - Aalborg University 4 

Evaluating POSIX Threads 
n  Powerful & flexible – too much flexible. 

n  Deadlocks, races, uncontrolled memory accesses. 
Any threads can write anything anywhere at any 
time. 

n  Shared address space paradigm does not 
encourage locality – not good for performance. 

n  Locks & condition variables not easy to use, 
against modularity & abstraction 

n  Locks are not composable. 
n  Locking is a global property (correctness + 

performance). 



29-04-2011 MVP'11 - Aalborg University 5 

Evaluating POSIX Threads 
n  False sharing easy to obtain. 
n  Locking: not possible to hide it, difficult to 

specify in an interface. 
n  Issues with deadlocks & performance. 

n  The argument that it is similar to sequential 
programs encourages programmers to write 
inefficient code. 



29-04-2011 MVP'11 - Aalborg University 6 

Evaluating Java Threads 
n  Similar to POSIX threads. 
n  Hide some of the complexity. 

n  But with the price of added unspecified behavior 
for threads & volatile memory. 



29-04-2011 MVP'11 - Aalborg University 7 

Evaluating OpenMP 
n  Global view “language”, clean and simple. 
n  Very easy to use but only simple forms of 

parallelism. 



29-04-2011 MVP'11 - Aalborg University 8 

Evaluating MPI 
n  Thinner interface than pthreads, more restricted 

communication. 
n  But many low-level details must be specified. Very 

easy to get it wrong. 
n  P-dependent point-to-point communication but 

collective communication operations supported. 
n  Private memory paradigm, encourages locality, but 

efforts needed. 
n  Overhead of message passing encourages coarse 

grained parallelism – good for performance. 
Suitable for static distributions. 

n  Not so portable w.r.t. performance. 



29-04-2011 MVP'11 - Aalborg University 9 

Evaluating PGAS Languages 
(Partitioned Global Address Space) 

n  Improve upon MPI with higher level 
mechanisms for communication. 
n  Global view offered, global data structures. 
n  But retain local view of computations. 

n  ZPL: Good concepts for parallel 
computations, encourages to think differently 
but unfamiliar concepts (regions, flooding…) 
no pointers, limited memory management, 
not object-oriented… 



29-04-2011 MVP'11 - Aalborg University 10 

Lessons for the Future 
n  Hidden parallelism – largely hidden from 

programmer. 
n  Locality – always important. Some languages 

encourage it. 
n  Constrained parallelism – too much flexibility or 

power is bad – force discipline on programmers. 
n  Flexibility can allow interactions that are difficult to reason 

about – correctness issues. 
n  Flexibility has performance issues if it obscures the 

performance model. 
n  The goal is to make effective use of the available 

resources (locality, limit dependencies, sync,…) not to 
expose maximal parallelism. 

n  Pthreads allows almost anything – compare with other 
approaches. 



29-04-2011 MVP'11 - Aalborg University 11 

Lessons – cont. 
n  Implicit vs. explicit parallelism. 

n  What’s the right level to expose it? 
n  Ex. GPU: shading routines are customized serial 

code, parallel code is written by the vendor. 
n  Other domain specific languages are very 

efficient. 
n  General vs. domain specific is like explicit 

(+general) vs. implicit (+convenient) parallelism. 


