
Introduction to Non-Blocking
Algorithms

Alexandre David
1.2.05

adavid@cs.aau.dk

29-04-2011 MVP'11 - Aalborg University 2

Concurrent Non-Blocking Algorithms

n  Concurrent: Several threads can execute the
algorithms simultaneously.

n  Blocking algorithms: Algorithms for which processes
may isolate or block part of the data-structure to
access it without interference. May cause deadlocks.

n  Non-blocking algorithms: They ensure that the
data-structure is always accessible to all processes.
Independent from other halted/delayed processes.

29-04-2011 MVP'11 - Aalborg University 3

Compare and swap (CAS)
n  Atomic instruction available on most processors.
n  Most common building block for non-blocking algorithms.
n  Available in Java

AtomicInteger.compareAndSet(int,int) -> bool

n  If the memory is equal to some expected value (compare)
then set the memory to a new value.

n  Intel:
cmpxchg r/m, r (needs lock prefix)

if eax == r then r/m = r, ZF=0
else eax = r/m, ZF=1

29-04-2011 MVP'11 - Aalborg University 4

Other Atomic Instructions (Intel)

n  Increment.
(lock inc r/m)

n  Decrement.
(lock dec r/m)

n  Exchange.
(xchg r/m, r)

n  Fetch and add.
(lock xadd r/m, r)

n  They can be used to implement simple and
efficient synchronizations primitives.

29-04-2011 MVP'11 - Aalborg University 5

Non-Blocking Algorithms
n  The key:

n  Try to compute speculatively.
n  CAS before committing the result.
n  Retry if CAS fails.

n  Good practice:
n  Work with a state-machine.
n  Every state must be consistent.
n  States = committed (intermediate) results.

29-04-2011 MVP'11 - Aalborg University 6

Non-Blocking Counter

proc inc(A)
lock
 tmp = A
 tmp = tmp+1
 A = tmp
unlock
end

Standard blocking
algorithm

proc inc(A)
do
 tmp = A
while not CAS(A, tmp, tmp+1)
end

Non-blocking
algorithm

29-04-2011 MVP'11 - Aalborg University 7

Non-Blocking Stack [Treiber’s Algorithm]

proc push(new)
do
 old = top
 new.next = old
while not CAS(top, old, new)
end

proc pop
do
 old = top
 return null if old == null
 new = old.next
while not CAS(top, old, new)
return old
end

top

push: states

top

top

old

new

top

29-04-2011 MVP'11 - Aalborg University 8

Non-Blocking Stack [Treiber’s Algorithm]

proc push(new)
do
 old = top
 new.next = old
while not CAS(top, old, new)
end

proc pop
do
 old = top
 return null if old == null
 new = old.next
while not CAS(top, old, new)
return old
end

top

pop: states old

top
old
0

0

0
return

0
return

top
old

top

old

top
old

return Careful with
memory!

new

29-04-2011 MVP'11 - Aalborg University 9

The ABA Problem
n  Suppose that the value of V is A.
n  Try a CAS to change A to X.
n  Another thread can change A to B and back

to A.
n  The CAS won’t see it and will succeed.
n  Usual solution: Add a version number to V.

A V:
exec CAS(V, A, X)

X V:
V=B;…V=A;

call CAS

29-04-2011 MVP'11 - Aalborg University 10

The ABA problem
n  Some algorithms may suffer from it.
n  Example: Linked list.

head
pop

head

Expected behavior

29-04-2011 MVP'11 - Aalborg University 11

The ABA problem

pop head head push

head push

head
pop head

lost:

29-04-2011 MVP'11 - Aalborg University 12

Fixes
n  Reference counter (implicit in Java).

n  Allocation/de-allocation problems.

n  Version number.
n  ABA problems.

29-04-2011 MVP'11 - Aalborg University 13

Insertion in a Queue
[Michael-Scott’s Algorithm]

proc put(new)
do
 last = tail
 nxt = last.next
 if last == tail
 if nxt == null
 if CAS(last.next, null, new)
 CAS(tail, last, new)
 break
 fi
 else
 CAS(tail, last, nxt)
 fi
 fi
loop
end

tail

head dummy

quiescent state

tail

head dummy

tail

head dummy

intermediate state

end state

ABA problem: use tags.

