Introduction to Non-Blocking

!’_ Algorithms

Alexandre David
1.2.05
adavid@cs.aau.dk

i Concurrent Non-Blocking Algorithms

s Concurrent: Several threads can execute the
algorithms simultaneously.

= Blocking algorithms: Algorithms for which processes
may isolate or block part of the data-structure to
access it without interference. May cause deadlocks.

= Non-blocking algorithms: They ensure that the
data-structure is always accessible to all processes.
Independent from other halted/delayed processes.

i Compare and swap (CAS)

= Atomic instruction available on most processors.
= Most common building block for non-blocking algorithms.

= Available in Java
AtomicInteger.compareAndSet(int,int) -> bool

= If the memory is equal to some expected value (compare)
then set the memory to a new value.

s Intel:
cmpxchg r/m, r (needs lock prefix)

if eax ==rthenr/m=r, ZF=0
else eax = r/m, ZF=1

i Other Atomic Instructions (Intel)

s Increment.
(lock inc r/m)

s Decrement.
(lock dec r/m)

= Exchange.
(xchg r/m, r)

= Fetch and add.
(lock xadd r/m, r)

= They can be used to implement simple and
efficient synchronizations primitives.

i Non-Blocking Algorithms

= The key:
= Try to compute speculatively.
= CAS before committing the result.
= Retry if CAS fails.

= Good practice:
= Work with a state-machine.
= Every state must be consistent.
= States = committed (intermediate) results.

i Non-Blocking Counter

Standard blocking
algorithm

proc inc(A)
lock
tmp =A
tmp = tmp+1
A=tmp
unlock
end

Non-blocking
algorithm

proc inc(A)
do
tmp = A
while not CAS(A, tmp, tmp+1)
end

on-Blocking Stack [Treiber’s Algorithm]

proc push(new) push: states
do old
old = top top o top >

new.next = old
while not CAS(top, old, new)

end neiw //

proc pop

do top 1
old = top t
op -

return null if old == null

new = old.next D B
while not CAS(top, old, new) -

return old
end

29-04-2011 MVP'11 - Aalborg University

Non-Blocking Stack [Treiber’s Algorithm]

proc push(new) pop: states old
do old 0
old = top top F— 0 » | top -
new.next = old
while not CAS(top, old, new) | return 0 return 0
end
old ,apw
do)
old = top old
return null if old == null l E-'*
new = old.next top -~
while not CAS(top, old, new) old
return old return D Careful with
end - memory!

29-04-2011 MVP'11 - Aalborg University 8

i The ABA Problem

= Suppose that the value of V is A.
= Try a CAS to change A to X.
= Another thread can change A to B and back

to A.

s The CAS won't see it and will succeed.
= Usual solution: Add a version number to V.

V: A

call CAS exec CAS(V, A, X)

ad
V=B;...V=A;

i The ABA problem

= Some algorithms may suffer from it.
= Example: Linked list.

head

Expected behavior

pop

29-04-2011

o -

head

=

MVP'11 - Aalborg University

I

10

i The ABA problem

lost: iii

29-04-2011

pop
head - D 5 head ——>D
o head ush »
pop p head -ﬂ
head — >
push
push [P g T

MVP'11 - Aalborg University

11

i Fixes

= Reference counter (implicit in Java).
= Allocation/de-allocation problems.

= Version number.
= ABA problems.

12

Insertion in a Queue
[Michael-Scott’s Algorithm]

proc put(new) quiescent state

do tail \'
last = tall

nxt = last.next head — dummy —>
if last == tail

if nxt == null :

if CAS(last.next, null, new) | | tail

CAS(tail, last, new)

intermediate state

break head — dummy — —».
fi
else
CAS(tail, last, nxt) tail end state

fi
f head | — dumm
loop

end ABA problem: use tags.

29-04-2011 MVP'11 - Aalborg University 13

