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i Overview

= One-to-all broadcast & all-to-one reduction
= All-to-all broadcast and reduction

= All-reduce and prefix-sum operations

= Scatter and Gather

= All-to-All Personalized Communication

= Circular Shift

= Improving the Speed of Some
Communication Operations



i Collective Communication Operations

= Represent regular communication patterns.

= Used extensively in most data-parallel
algorithms.

= Critical for efficiency.
= Available in most parallel libraries.

= Very useful to “get started” in parallel
processing.

= Basic model: t.+mt, time for exchanging a
m-word message with cut-through routing.



i Interesting:

s 10 know:

= Data transfer time is roughly the same
between all pairs of nodes.

= Homogeneity true on modern hardware
(randomized routing, cut-through routing...).

« t.+mt,
= Adjust ¢, for congestion: effective ¢,

= Model: bidirectional links, single port.

= Communication with point-to-point
primitives.




i Broadcast/Reduction

= One-to-all broadcast:
= Single process sends identical data to all (or
subset of) processes.
= All-to-one reduction:
= Dual operation.

= P processes have m words to send to one
destination.

= Parts of the message need to be combined.




i Broadcast/Reduction

Broadcast Reduce
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iOne-to-AII Broadcast — Ring/Linear Array

= Naive approach: send sequentially.
= Bottleneck.
= Poor utilization of the network.

= Recursive doubling:
= Broadcast in logp steps (instead of p).
= Divide-and-conquer type of algorithm.
= Reduction is similar.




i Recursive Doubling
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i One-to-All Broadcast — Mesh

Extensions of the linear array algorithm.
Rows & columns = arrays.
Broadcast on a row, broadcast on columns.
Similar for reductions.
Generalize for higher dimensions (cubes...).
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i Broadcast on a Mesh
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i One-to-All Broadcast — Hypercube

= Hypercube with 29 nodes = d-dimensional
mesh with 2 nodes in each direction.

= Similar algorithm in d steps.
= Also in logp steps.
= Reduction follows the same pattern.
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i Broadcast on a Hypercube




All-to-One Broadcast
i Balanced Binary Tree

= Processing nodes = leaves.

= Hypercube algorithm maps well.
= Similarly good w.r.t. congestion.
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i Broadcast on a Balanced Binary Tree
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Figure 4.7 One-to-all broadcast on an eight-node tree.
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i Algorithms

= S0 far we saw pictures.
= Not enough to implement.

= Precise description
= to implement.
= to analyze.

= Description for hypercube.

= Execute the following procedure on all the
nodes.
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i Broadcast Algorithm

N> |

procedure ONE_TO_ALL_BC(d, my_id, X)

begi . .
; .ur'r'e?,)g\; dimension 111 /* Setall d bits of mask to 1 */
4. fo d — 1 downto O do /* Outer loop */
5. mask := mask XOR 2'; 011 /[* @Ql}it i QPbQ/Sk to O */
6. if (my_id AND mask) = 0 then /* If lower i bits of my_id are 0 */
7. if (my_id AND 2') = 0 then
8. msg_destination := my_id XOR 2';
9. send X to msg_destination; 001 @ —O>OO 1@
10. else
11. msg_source := my_id XOR 27; 001 C@) O@ 000
12. receive X from msg_source;
13. endelse;
14. endif;
15. endfor;
16. end ONE_TO_ALL_BC




Broadcast Algorithm

1. procedure ONE_TO_ALL_BC(d, my_d, X)

2.  begin

3. mask =29 — 1; /* Set all d bits of mask to 1 */

4. fori :=d — 1 downto O do /* Outer loop */

5. mask := mask XOR 2'; /[* @Ql)it i Q%Qisk to 0 */

6. if (my_id AND mask) = 0 then /* If lower i bits of my_id are 0 */

7. if (my_id AND 2') = 0 then

8. msg_destination = my_d XOR 2/; 111
9. send X to msg_destination;

10. else

11. msg_source := my_id XOR 27;

12. receive X from msg_source;

13. endelse;

14. endif;

15. endfor; 101
16. end ONE_TO_ALL_BC @ 001
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Broadcast Algorithm
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procedure ONE_TO_ALL_BC(d, my_id, X)

begin
mask =29 — 1; /* Set all d bits of mask to 1 */
fori :=d — 1 downto O do /* Outer loop */
mask := mask XOR 2 /* Set bit i Q%Qisk to 0 */

if (my_id AND mask) = 0 then /* If lower i bits of my_id are 0 */
if (my_id AND 2") = 0 then
msg_destination = my_d XOR 2/;

send X to msg_destination;
else

msg_source := my_id XOR 27;
receive X from msg_source;
endelse;
endif;

endfor;
end ONE_TO_ALL_BC




i Algorithm For Any Source

= O 0 AN R W=

14.
15.
16.

procedure GENERAL_ONE_TO_ALL_BC(d, my_id, source, X)
begin
my_virtual_id := my_id XOR source;
mask =29 — 1:
fori :=d — 1 downto O do  /* Outer loop */
mask 1= mask XOR 2/; /* Set bit i of mask to 0 */
if (my_virtual_id AND mask) = 0O then
if (my_virtual_id AND 2') = 0 then
virtual _dest := my_virtual_id XOR 2';
send X to (virtual_dest XOR source);,
/* Convert virtual_dest to the label of the physical destination */
else
virtual_source := my_virtual _id XOR 2';
receive X from (virtual_source XOR source);
/* Convert virtual_source to the label of the physical source */
endelse;
endfor;
end GENERAL_ONE_TO_ALL_BC
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‘L Reduce Algorithm

SNE =

% = o

11.
12.
13.
14.
15.
l6.
17.
18.

procedure ALL_TO_ONE_REDUCE(d, my_id, m, X, sum)
begin
for j :=0tom — 1 dosum[j] := X[J];
mask := 0;
fori :=0tod — 1 do
/* Select nodes whose lower i bits are 0 */
if (my_id AND mask) = O then
if (my_id AND 2") = 0 then
msg_destination := my_id XOR 2';

In a nutshell:
reverse the previous one.

receive X ITOM MISZ SOlTCe,
for j :=0tom — 1do
sum[j] :==sum[j]+ X[/1:

endelse;
mask = mask XOR 2'; /* Set biti of mask to 1 */
endfor;

end ALL_.TO_ONE_REDUCE
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i Cost Analysis

p processes — logp steps (point-to-point
transfers in parallel).

Each transfer has a time cost of

t+t,m.

Total time: T=(t+t,m) logp.
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i All-to-All Broadcast and Reduction

= Generalization of broadcast:
= Each processor is a source and destination.

= Several processes broadcast different
messages.

= Used in matrix multiplication (and matrix-
vector multiplication).

= Dual: all-to-all reduction.
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All-to-all broadcast
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Figure 4.8 All-to-all broadcast and all-to-all reduction.
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i All-to-All Broadcast and Reduction
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i All-to-All Broadcast — Rings
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i All-to-All Broadcast Algorithm

1.  procedure ALL_TO_ALL_BC_RING(my_id, my_msg, p, result)
2.  begin .

3. left := (my_id — 1) mod p:; ng: mod p.

4. right == (my-id + 1) mod p: Receive & send - point-to-point.
5. result .= my_msg,

6. msg = result, In|T|allze The IOOP.

1. fori :=1top—1do

8. send msg to right,

9. receive msg from left; Forward msg.

10. result .= result U msg; Accumulate result.
1. endfor;

12.  end ALL_.TO_ALL_BC_RING

Algorithm 4.4  All-to-all broadcast on a p-node ring.
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i All-to-All Reduce Algorithm
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procedure ALL_TO_ALL_RED_RING(my_id, my_msg, p, result)
begin
left .= (my_id — 1) mod p;
right == (my_id + 1) mod p;
recv := 0,
fori . =1top—1do
= (my_d + 1) mod p;
‘,]emp :(z f;/,sg[‘,-] +) m..v;p Accumulate and forward.
send remp to left;
receive recv from right,
endfor;

result := msglmy_id] + recv: | qst message for' my. /d
end ALL_TO_ALL_RED_RING -

Algorithm 4.5 All-to-all reduction on a p-node ring.
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i All-to-All Reduce — Rings
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i All-to-All Reduce — Rings
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i All-to-All Broadcast — Meshes

= TWo phases:

= All-to-all on rows — messages size m.
= Collect sgrt(p) messages.

= All-to-all on columns — messages size sqrt(p)
Xk
m.
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i All-to-All Broadcast — Meshes
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Algorithm

1.  procedure ALL_.TO_ALL_.BC_MESH(my_id, my_msg, p, result)
2. begin

/* Communication along rows */
left .= my_id — (my_id mod /p) + (my_id — 1)mod/p;
right == my_id — (my_id mod ,/p) + (my_id + 1) mod ,/p;
result .= my_msg;
msg = result;
fori :=1to  /p—1do
send msg to right,
. receive msg from /eft,
0. result := result U msg;
I. endfor;

— =0 ® N0 Uk W

/* Communication along columns */

12. up == (my_id — /p) mod p;
13. down := (my_id + ./p) mod p;
14. msg = result,

15. fori :=1to /p—1do

16. send msg to down;

17. receive msg from up;

18. result .= result U msg;

19. endfor;

20. end ALL_TO_ALL_BC_MESH
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i All-to-All Broadcast - Hypercubes

= Generalization of the mesh algorithm to
logp dimensions.

= Message size doubles at every step.
= Number of steps: logp.
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All-to-All Broadcast — Hypercubes

(c) Distribution before the third step (d) Final distribution of messages
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i Algorithm

=L XNk =

procedure ALL_TO_ALL_BC_HCUBE(my_id, my_msg, d, result)

begin
result == my_msg;
fori :=0tod — 1do
partner :=my_id XOR 2';
send result to partner;
receive msg from partner;
result ;= result U msg;
endfor;
end ALL_.TO_ALL_BC_HCUBE

Loop on the dimensions

Exchange messages

Forward (double size)

Algorithm 4.7  All-to-all broadcast on a d-dimensional hypercube.




‘J,AII to-All Reduction — Hypercubes

PN A=

o

10.
11.
12.
13.
14.
15.
16.
17.

procedure ALL_TO_ALL_RED_HCUBE(my_id, msg, d, result)

begin

recloc :=0;

fori :=d —1to0do
partner .= my_id XOR 2;
j :=my_id AND 2';
k = (my_id XOR 2") AND 2/;
senloc := recloc + k;
recloc ;= recloc + J;

Similar pattern
in reverse order.

send msg[senloc .. senloc +2' — 1] to partner:;

receive femp|0 .. 2’ — 1] from partner;

for j :=0to2 — 1 do

msglrecloc + j| := msg[recloc + j] + temp[j]: Combine results

endfor;
endfor;
result .= msg|my_id];
end ALL_.TO_ALL_RED_HCUBE

Algorithm 4.8 AII-to-aIn a d-dimensional hypercube. AND and XOR are bitwise
logical-and and exclusive-or operations, respectively.
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i Cost Analysis (Time)
= Ring:

T=(t, + t,m)(p-1).

= Mesh:
» T=(t, + t,m)(Vp-1)+(t. + t,mvp) (Vp-1)

= Jts(vp — 1) + t,m(p-1).

= Hypercube:

18-04-2011

logp

T = Z(ts + 2t ,m)
i=1

= tslogp Htuym(p — 1).

logp steps
message of size 2-m.

MVP'11 - Aalborg University
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i Dense to Sparser: Congestion
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Figure 412 Contention for a channel when the communication step of Figure 4.11(c) for the hy-
percube is mapped onto a ring.
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i All-Reduce

s Each node starts with a buffer of size m.

= The final result is the same combination of
all buffers on every node.

= Same as all-to-one reduce + one-to-all
broadcast.

» Different from all-to-all reduce.

O O 0O O
E 1234111234 ||1234 || 1234

o O O
1 |12 |3

=10
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i All-Reduce Algorithm

= Use all-to-all broadcast but

= Combine messages instead of concatenating
them.

= The size of the messages does not grow.
= Cost (in logp steps): T=(t.+t,m) logp.

40



i Prefix-Sum

= Given p numbers ngny,...,n, ; (one on each
node), the problem is to compute the sums
s, = 2 k., n; for all kbetween 0 and p-1.

= Initially, n, is on the node labeled k, and at
the end, the same node holds S,.

41



i Prefix-Sum Algorithm

procedure PREFIX_SUMS_HCUBE(my_id, my_number, d, result)
begin
result := my _number,
msg = result;
fori :=0tod — 1do
partner :=my_id XOR 2/;
send msg to partner;
receive number from partner; ;
msg = msg + number; Prefix-sum
if (partner < my_id) then result .= result + number;
endfor;
end PREFIX_SUMS_HCUBE

All-reduce

O NNk =

—_ \O
.O .

[ERE WY
0o —

Algorithm 4.9  Prefix sums on a d-dimensional hypercube.
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i Prefix-Sum

Buffer = all-reduce sum
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i Scatter and Gather

= Scatter: A node sends a unigue message to
every other node — unique per node.

= Gather: Dual operation but the target node
does not combine the messages into one.
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(¢) Distribution before the third step

(6) (7)
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(d) Final distribution of messages
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i Cost Analysis

= Number of steps: logp.

= Size transferred: pm/2, pm/4,...,m.
=« Geometric sum 1

I- 1
P P P 2"

+—F+—F.. +—=

P 2 4 2" P 1_1
2

p . D p 1

—+—+..+—=2p(l-

2 4 2n p( 2n+1

(2n+1 _ 21+10gp _ zp)
s Cost T=tlogp+t, m(p-1).

2p

)—p=2pﬂ—iﬁ—p=p—1
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i All-to-All Personalized Communication

= Each node sends a distinct message to
every other node.

18-04-2011 MVP'11 - Aalborg University
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i Example: Transpose

4
B 7 7
Lt
n
P2 ¢ ¢ -~
- Ve Vs
P;

Figure 4.17  All-to-all personalized communication in transposing a 4 x 4 matrix using four pro-
cesses.
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i Total Exchange on a Ring
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i Total Exchange on a Ring

0(1(2|3
0
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i Cost Analysis

= Number of steps: p-1.
= Size transmitted: m(p-1),m(p-2)...,m.

p-1

T =tS(p—1)+2itwm =(t, +t mp/2)(p-1)

l=

Optimal
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i Optimal?

= Check the lowest bound for communication
and compare to the one we have.

= Average distance a packet travels = p/2.

= There are p nodes that need to transmit m(p-1)
words

« Total traffic = m(p-1)*p/2*p.

= Number of link that support the load = p, so
communication time = t,m(p-1)p/2.
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i Total Exchange on a Mesh
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i Total Exchange on a Mesh




i Total Exchange on a Mesh
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i Cost Analysis

= Substitute p by vp (number of nodes per
dimension).

= Substitute message size m by mvp.
s Cost is the same for each dimension.

. T=(2t;+t,mp)(Vp-1)
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i Total Exchange on a Hypercube

= Generalize the mesh algorithm to logp steps
= number of dimensions, with 2 nodes per
dimension.

= Same procedure as all-to-all broadcast.
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i Total Exchange on a Hypercube

gl
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Cost Analysis

= Number of steps: logp.

= Size transmitted per step: pmy/2.

s Cost: T=(t.+t,mp/2) logp.

= Optimal? | NO

= Each node sends and receives m(p-1)
words. Average distance = (‘logp)/2. Total
traffic = p*m(p-1)* logp/2.

= Number of links = p logp/2.

= Time lower bound = t,m(p-1).
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i An Optimal Algorithm

= Have every pair of hodes communicate
directly with each other — p-1
communication steps — but without
congestion.

= At ji" step node i communicates with node
(i xor j) with E-cube routing.
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube

18-04-2011
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Cost Analysis

= Remark: Transmit less, only what is
needed, but more steps.

= Number of steps: p-1.

= [ransmission: size m per step.

= Cost: T=(t+t,m)(p-1).

s Compared with T=(t.+t,mp/2) logp.

= Previous algorithm better for small
messages.

70



i Circular Shift

= It's a particular permutation.

= Circular g-shift: Node jsends data to node
(i+g) mod p (in a set of p nodes).

= Useful in some matrix operations and
pattern matching.

= Ring: intuitive algorithm in min{q,p-q}
neighbor to neighbor communication steps.
Why?

/1
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i Circular Shift on a Hypercube

= Map a linear array with 2¢ nodes onto a
hypercube of dimension d.

= Expand g shift as a sum of powers of 2 (e.g.
5-shift = 20+22).
= Perform the decomposed shifts.

= Use bi-directional links for “forward” (shift
itself) and “backward” (rotation part)... logp
steps.
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Or better:
Direct

E-cube routing.

g-shifts on a
8-node
hypercube.

18-04-2011

(d) 4-shift (e) 5-shift (f) 6-shift

(g) 7-shift
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i Improving Performance

= S0 far messages of size m were not spilit.

= If we split them into p parts:

= One-to-all broadcast = scatter + all-to-all
broadcast of messages of size m/p.

= All-to-one reduction = all-to-all reduce + gather
of messages of size m/p.

= All-reduce = all-to-all reduction + all-to-all
broadcast of messages of size m/p.
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