
ZPL and Other Global View
Languages

Alexandre David
1.2.05

adavid@cs.aau.dk

15-04-2011 MVP'11 - Aalborg University 2

Introduction
n  So far:

n  libraries in C for threads & message passing
n  only libraries, same base language, no syntactic

support for parallelism (omp special)

n  High-level parallel language
n  see the whole computation
n  implicit parallelism
n  ZPL is one example, interesting for the benefits at

the concept level

15-04-2011 MVP'11 - Aalborg University 3

ZPL
n  Focus on arrays & their manipulations.
n  Provides implicit parallelism.

n  Generated threads, communication, sync.

n  Goal: parallelism & parallel performance,
including the communication cost, without
low-level code.

n  Example:
[1..n] count:=+<<(array==3);

15-04-2011 MVP'11 - Aalborg University 4

Basics
n  Array language – arrays as units.

n  A+=1; – updates done logically in parallel.

n  Regions: computations on partial arrays
n  [1..n] A+=1;

[1..n/2] A+=1;
n  Several dimensions possible, e.g., [1..8, 1..8]
n  Implicit reference of sub-arrays

[1..m, 1..m] E:=1/B;
works if B “larger” array than E.

15-04-2011 MVP'11 - Aalborg University 5

Regions
n  Limit case: one element.

n  [x,y] D:=sqrt(2);
n  Used to declare sizes of arrays.

n  var B, C : [1..m,1..n] float;
n  Named regions.

n  region R=[1..m,1..n];
var B,C : [R] float;
[R] B:=2*C+D;

n  Scope: next statement or block of
statements.

15-04-2011 MVP'11 - Aalborg University 6

Primitive Types

Lesson: Specialized types for numerical computations.

15-04-2011 MVP'11 - Aalborg University 7

Control-Flow Statements

15-04-2011 MVP'11 - Aalborg University 8

Array Computation
n  Operators applied element-wise on

corresponding elements of the arrays.
[R] TW:=(TW & NN=2) | (NN=3);

n  Operators different than the ones in C.

n  Lesson: High-level operators suited for
parallelism.

15-04-2011 MVP'11 - Aalborg University 9

Operators

15-04-2011 MVP'11 - Aalborg University 10

@-translation
n  Shift indices on operations – otherwise very

boring operations only.
n  direction left=[-1]; right=[1];

declares directions for references
n  [2..n-1] A:=(A+A@left+A@right)/3;

translates the indices according to the directions.
n  Example:

direction nw=[-1,-1]; no=[-1,0]; ne[-1,1]; …
TW@nw+TW@no+TW@ne+TW@we... gives the
number of neighbors relative to TW current
element.

15-04-2011 MVP'11 - Aalborg University 11

Reduce
n  op<<A with an associative & commutative

operator.
n  [2..n-1] total=+<<A;
n  [R] biggest := max<<B;
n  [R] span:=(max<<A)-(min<<A)+1;

n  Lesson: Provide useful high-level operators in
a way that can be exploited for parallelism.

15-04-2011 MVP'11 - Aalborg University 12

Conway’s Game of Life
n  Start with an initial configuration =

generation 0.
n  Rules between every generation:

n  An organism survives if it has 2 or 3 neighbors.
n  An organism is born at a free position if it has 3

neighbors.
n  All other organisms die.

n  Coding: The world array TW, use @-
translation to read neighbors.

15-04-2011 MVP'11 - Aalborg University 13

Conway’s Game of Life

No race condition
problem.

Arrays declared
logically but the
compiler does not
have to really
create them.

15-04-2011 MVP'11 - Aalborg University 14

Lessons
n  Simple problem, simple program.
n  Concise & clear.

n  Manipulate entire arrays at the same time.
n  Regions and directions.
n  Implicit parallelism comes from array operations.

15-04-2011 MVP'11 - Aalborg University 15

Distinguishing Features
compared to other array languages

n  Regions and @ operator.
n  Restrictions to enforce programming discipline &

distinguish expensive operations.
n  No transpose possible with only regions & @.
n  Cost distinction between transpose & copy.

n  Note: typos in transpose example.

n  Removal of very general operators with non
defined costs.

n  Restriction on ranks of arrays.

15-04-2011 MVP'11 - Aalborg University 16

Manipulating Arrays of Different Ranks

n  Regions define dimensions, number of
elements, the indices, and the allocation.

n  Operators between arrays of the same ranks.
n  Use larger rank if mismatch (with collapsed

dimensions).
n  Replicate elements – flood operator.

Elements are logically replicated but not
necessarily really copied.

15-04-2011 MVP'11 - Aalborg University 17

Partial Reduce
n  Partial reduce on some dimensions.

n  with regions.
n  Example: [1,1..n] C:=+<< [1..m, 1..n] B;

n  Example: [1..m, 1] D:=*<< [1..m, 1..n] B;

n  Example: [1,1,1..n] G:= max <<
[1,1..m,1..n] (min<<[1..p,1..m,1..n F);

n  Lesson: high-level parallelizable operators.

m

n

m

n

15-04-2011 MVP'11 - Aalborg University 18

Flooding
n  Way to expand dimensions.
n  Inverse of partial reduce.

n  [1..m,1..n] B:=>>[1,1..n] C;
n  [1..m,1..n] C:=>>[1..m,1] D;
n  Fills the missing dimension by copies.

n  Principle:
n  Element-wise operators need the same

dimensions.
n  Logical copies.

15-04-2011 MVP'11 - Aalborg University 19

Matrix Multiplication
n  Usual sequential language:

for(i=0; i<m; i++)
 for(j=0; j<p; j++) {
 C[i,j]=0;
 for(k=0; k<n; k++)
 C[i,j] += A[i,k]*B[k,j];
 }

n  Simple but not suited for parallel product.

C[m*p]=A[m*n]*B[n*p]

15-04-2011 MVP'11 - Aalborg University 20

Matrix Multiplication
n  Considering parallel element-wise

multiplications, we can flood the input
matrices, do the multiplications, and
accumulate.

C1,1 = A1,1 *B1,1 + A1,2 *B2,1 + A1,3 *B3,1
C2,1 = A2,1 *B1,1 + A2,2 *B2,1 + A2,3 *B3,1
C3,1 = A3,1 *B1,1 + A3,2 *B2,1 + A3,3 *B3,1
C1,1 = A1,1 *B1,1 + A1,2 *B2,1 + A1,3 *B3,1
C1,2 = A1,1 *B1,2 + A1,2 *B2,2 + A1,3 *B3,2
C1,3 = A1,1 *B1,3 + A1,2 *B2,2 + A1,3 *B3,3

15-04-2011 MVP'11 - Aalborg University 21

ZPL Matrix Multiplication

15-04-2011 MVP'11 - Aalborg University 22

Reordering Data
n  Explicit communication cost.
n  Index arrays

n  predefined arrays Index1, Index2, …
(indices on i dimension flooded on the others)

n  Use: [1..n,1..n] Diag:=Index1=Index2;

n  Remap operator (#)
n  gather: B=A#[P]; -- pick elements of A in order defined

by indices in P
n  scatter: C#[P]=A; -- reverse
n  Ex: [1..n, 1..m] Btransp:=B#[Index2,Index1];
n  Lesson: higher-order operators available

15-04-2011 MVP'11 - Aalborg University 23

Parallel Execution of ZPL
n  Based on the array language features.
n  The compiler generates loop nests, adds

communication, reduce, …
n  Optimizations

n  combine loop nests – reduce memory
n  combine communication – reduce interaction
n  overlap communication & computation
n  efficient flood arrays
n  efficient index arrays

n  Lesson: Force to think using certain language
constructs that exhibit parallelism. The compiler
does the rest.

15-04-2011 MVP'11 - Aalborg University 24

Performance Model

Cost model with the language.
Easy to identify costs.

15-04-2011 MVP'11 - Aalborg University 25

Communication Cost
n  @: λ delay
n  Local computation
n  Reduce: 2λ log P

15-04-2011 MVP'11 - Aalborg University 26

Communication Cost
n  SUMMA:

[1..m, 1..p] begin
 C:=0;
 for k:=1 to n do
 C+=(>>[1..m,k] A) * (>>[k,1..p] B);
 end;
end;

n  C=0: perfectly parallel
(√p*√p grid) flood: λlog P/2

15-04-2011 MVP'11 - Aalborg University 27

Other Language
n  NESL – functional language

n  has a complexity model – work & depth
n  main feature: apply-to-each operation.

n  Lessons
n  High-level (restricted) constructs
n  Force to use these constructs and exhibit

parallelism
n  Cost/complexity model to reason about

performance

