/PL and Other Global View

!'_ Languages

Alexandre David
1.2.05
adavid@cs.aau.dk

i Introduction

= SO far:
=« libraries in C for threads & message passing

= only libraries, same base language, no syntactic
support for parallelism (omp special)

= High-level parallel language
= See the whole computation
= implicit parallelism

= ZPL is one example, interesting for the benefits at
the concept level

i 7PL

= Focus on arrays & their manipulations.

= Provides implicit parallelism.
= Generated threads, communication, sync.
= Goal: parallelism & parallel performance,

including the communication cost, without
low-level code.

= Example:
[1..n] count:=+<<(array==3);

i Basics

= Array language — arrays as units.
= A+=1; — updates done logically in parallel.

= Regions: computations on partial arrays
« [1..n] A+=1;
[1..n/2] A+=1;
= Several dimensions possible, e.g., [1..8, 1..8]

= Implicit reference of sub-arrays
[1..m, 1..m] E:=1/B;
works if B “larger” array than E.

i Regions

= Limit case: one element.
« [X,y] D:=sqrt(2);

= Used to declare sizes of arrays.
« var B, C: [1..m,1..n] float;

= Named regions.

= region R=[1..m,1..n];
var B,C : [R] float;
[R] B:=2*C+D;
= Scope: next statement or block of
statements.

i Primitive Types

Byte Types 2-Byte Types 4-Byte Types 8-Byte Types 16-Byte Types

boolean

sbyte shortint integer longint

ubyte ushortint uinteger ulongint
float double quad
complex dcomplex qgcomplex

The prefix ‘v’ indicates that the representation is unsigned, giving it an additional
bit of precision. The quad type is available only if it is available in C on the target
architecture; otherwise it defaults to double. A k-byte complex type uses k bytes
for the real and k bytes for the imaginary parts of the number.

Lesson: Specialized types for numerical computations.

15-04-2011 MVP'11 - Aalborg University 6

i Control-Flow Statements

ZPL Control-Flow Statements

if logical-expression then statements {else statements} end;
for var := low to high {by step} do statements end;
while logical-expression do statements end;

repeat statements until logical-expression;

return {expression};

begin statements end;

Text in braces is optional; text in italics must be replaced by
program constructs of the indicted kind.

15-04-2011 MVP'11 - Aalborg University

i Array Computation

= Operators applied element-wise on
corresponding elements of the arrays.
[R] TW:=(TW & NN=2) | (NN=3);

= Operators different than the ones in C.

= Lesson: High-level operators suited for
parallelism.

i Operators

Datatype Operators

Numeric + (unary), = (unary), +, =, *, /, *, % (modulus)
Logical !, & |

Relational = 1= < > <= >=

Bit-wise bnot(a),band(a,b),bor(a,b), bxor(a,b),

bsl(s,a) (shift a's bits s places left, fill with 0s),
bsr(s,a) (shifta's bits right s places, fill with 0s)

Exponentiation () is optimized to multiplication for small powers, for exam-
ple, 2, but generally compiles to a call on C’s pow() function.
The operator assignments recognized are: +=, -=, *=, /=, %=, &=, |=

15-04-2011 MVP'11 - Aalborg University

i @-translation

= Shift indices on operations — otherwise very
boring operations only.
= direction left=[-1]; right=[1];
declares directions for references
= [2..n-1] A:=(A+A@left+A@right)/3;
translates the indices according to the directions.

« Example:
direction nw=[-1,-1]; no=[-1,0]; ne[-1,1]; ...
TW@nw+TW@no+TW@ne+TW@we... gives the
number of neighbors relative to TW current
element.

10

i Reduce

= Op<<A with an associative & commutative
operator.

= [2..n-1] total=+<<A;
= [R] biggest := max<<B;
= [R] span:=(max<<A)-(min<<A)+1;

= Lesson: Provide useful high-level operators in
a way that can be exploited for parallelism.

11

i Conway’s Game of Life

= Start with an initial configuration =
generation 0.

= Rules between every generation:
= An organism survives if it has 2 or 3 neighbors.

= An organism is born at a free position if it has 3
neighbors.

= All other organisms die.

= Coding: The world array TW, use @-
translation to read neighbors.

12

Conway’s Game of Life

0 O U b W -

NN NNNDNERERRRR R 93 2 2 92
AU WINEE O WO WN = O v

program Life;
config const n : integer =

region
R =[1l..n, l..n];
BigR=[0..n+1, 0..n+1];

var

TW: [BigR] boolean = 0;

NN:[R] integer;

direction
nw=[-1, =-1]; no=[-1, 0];
we=[0, -1];
sw=[1, -1]; so=[1, 0];

procedure Life();
begin
--Initialize the world
[R] repeat
NN:=TW@nw+TW@no+TW@ne+
TWewe+ TWeea+
TWesw+TW@so+TWese;
TW:=(TW & NN = 2) |(NN =
until !(|<< TW);
end;

50;

3);

Arrays declared
logically but the
compiler does not
have to really
create them.

-- The World
-- Number of Neighbors

1];
1]1;
1];

No race condition
problem.

13

i Lessons

= Simple problem, simple program.
= Concise & clear.
= Manipulate entire arrays at the same time.
= Regions and directions.
= Implicit parallelism comes from array operations.

14

compared to other array languages

i Distinguishing Features

= Regions and @ operator.

= Restrictions to enforce programming discipline &
distinguish expensive operations.

= No transpose possible with only regions & @.
= Cost distinction between transpose & copy.

= Note: typos in transpose example.

= Removal of very general operators with non
defined costs.

= Restriction on ranks of arrays.

15

i Manipulating Arrays of Different Ranks

= Regions define dimensions, number of
elements, the indices, and the allocation.

= Operators between arrays of the same ranks.

» Use larger rank if mismatch (with collapsed
dimensions).

= Replicate elements — flood operator.
Elements are logically replicated but not
necessarily really copied.

16

i Partial Reduce

s Partial reduce on some dimensions.
= With regions.

« Example: [1,1..n] C:=+<< [1..m, 1..n] B;

« Example: [1..m, 1] D:=*<< [1..m, 1..n] B;

« Example: [1,1,1..n] G:= max <<
[1,1..m,1..n] (min<<[1..p,1..m,1..n F);

m

m

-~

= Lesson: high-level parallelizable operators.

[T TT]

n

17

i Flooding

= Way to expand dimensions.

= Inverse of partial reduce.

« [1..m,1..n] B:=>>[1,1..n] C;

« [1..m,1..n] C:=>>[1..m,1] D;

= Fills the missing dimension by copies.
= Principle:

= Element-wise operators need the same
dimensions.

= Logical copies.

18

i Matrix Multiplication

= Usual sequential language:
fOf‘(i‘ZO,' I<m; i++) C[m*p]=A[m*n]*B[n*p]
for'(j:O; j<p; j++) {
Cli.j1=0:;
for(k=0; k<n; k++)
Cli,j] += ALi kT*B[k.j].
}

= Simple but not suited for parallel product.

19

i Matrix Multiplication

= Considering parallel element-wise
multiplications, we can flood the input
matrices, do the multiplications, and

accumulate.
C1,1 = A1,1 ¥ Bl,l + A1,2 ¥ BZ,I + A1,3 ¥ B3,1

— S S S
C2,1 - A2,1 Bl,l + A2,2 B2,1 + A2,3 B3,1
— x & S
C3,1 B A3,1 Bl,l + A3,2 B2,1 + A3,3 B3,1

— S S S

Cl,l - Al,l Bl,l + A1,2 B2,1 + A1,3 B3,1
— & * &

C1,2 - Al,l B1,2 + A1,2 B2,2 + A1,3 BB,Z
— * * *

C1,3 - Al,l B1,3 + A1,2 B2,2 + A1,3 BS,3

20

/PL Matrix Multiplication

var A : [l..m, 1l..n] double;
B : [1l..n, 1l..p] double;
C : [l..m, 1l..p] double;
Col : [l1l..m, *] double;
Row : [*, 1l..p] double;
k - integer;

procedure MM();
[l..m, 1l..p] begin

C:=0;
for k:=1 to n do
[1..m, *] Col:=>> [1l..m, k] A;
[*, 1l..pP] Row:=>> [k, 1l..p] B;
C+=Col*Row;
end;

end;

21

i Reordering Data

= EXplicit communication cost.

= Index arrays

= predefined arrays Index1, Index2, ...
(indices on i dimension flooded on the others)

= Use: [1..n,1..n] Diag:=Index1=Index2;
= Remap operator (#)

= gather: B=A#[P]; -- pick elements of A in order defined
by indices in P

« Scatter: C#[P]=A; -- reverse

= Ex: [1..n, 1..m] Btransp:=B#[Index2,Index1];
= Lesson: higher-order operators available

22

i Parallel Execution of ZPL

= Based

on the array language features.

= The compiler generates loop nests, adds
communication, reduce, ...

= Optimizations

= COM
= COM

bine loop nests — reduce memory
bine communication — reduce interaction

s Qver

ap communication & computation

» efficient flood arrays
« efficient index arrays

= Lesson: Force to think using certain language
constructs that exhibit parallelism. The compiler
does the rest.

23

i Performance Model

ZPL’s performance model specifications for worst-case behavior; the actual
performance is influenced by n, P, process arrangement, and compiler
optimizations, in addition to the physical features of the computer.

Parallelism Communication
Syntactic Cue Example P) Cost Remarks
[R] arrayops [R] ... A+B ... full; work/P -

@ array transl. ... AReast ...

<< reduction ... +<<A .

<<partialred ... +<<[] A ...

|| scan coe ||
>> flood «.. >>[] A...
remap ... A# [I1,1I2]

= 1 point-to-point
work/P + log P 2log P point-to-point
work/P + log P log P point-to-point
work/P + log P 2log P point-to-point
= multicast in dimension

- 2 all-to-all, potentially

xmit “surface” only

fan-in/out trees

parallel prefix trees
data not replicated

general data reorg.

Cost model with the language.

Easy to identify costs.

15-04-2011

MVP'11 - Aalborg University

24

‘i Communication Cost

= @: A delay
= Local computation
= Reduce: 2\ log P

15-04-2011

17
18
19
20
21
22
23
24
25
26

procedure Life();
begin
--Initialize the world
[R] repeat
NN:=TW@nw+TW@no+TW@ne+
TWewe+ TWeea+
TWesw+TW@so+TWese;
TW:=(TW & NN = 2) |(NN = 3);
until !(|<< TW);
end;

25

i Communication Cost

s SUMMA:
[1..m, 1..p] begin
C:=0;
for k:i=1tondo
C+=(>>[1..m,k] A) * (>>[k,1..p] B);
end;
end;

s C=0: perfectly parallel
(vVp*Vp grid) flood: Alog P/2

26

i Other Language

= NESL — functional language
=« has a complexity model — work & depth
»« main feature: apply-to-each operation.

m Lessons

High-level (restricted) constructs
~orce to use these constructs and exhibit

narallelism

= Cost/complexity model to reason about

performance

27

