
OpenMP

Alexandre David
1.2.05

adavid@cs.aau.dk

15-04-2011 MVP'11 - Aalborg University 2

Release History

Some pictures from
https://computing.llnl.gov/tutorials/openMP/

15-04-2011 MVP'11 - Aalborg University 3

Goals
n  Standardization:

n  Standard among a variety of shared memory architectures/platforms

n  Lean and Mean:
n  Simple and limited set of directives for programming shared memory

machines. Significant parallelism can be implemented by using just 3
or 4 directives.

n  Ease of Use:
n  Capability to incrementally parallelize a serial program, unlike

message-passing libraries which typically require an all or nothing
approach.

n  Capability to implement both coarse-grain and fine-grain parallelism.

n  Portability:
n  Supports Fortran (77, 90, and 95), C, and C++.
n  Public forum for API and membership.

15-04-2011 MVP'11 - Aalborg University 4

Introduction
n  Idea: Augment sequential program in minor

ways to gain parallelism.
n  Directive based – using #pragma.
n  Simple.
n  More restrictive.

n  C compiler that understands OpenMP will
generate multi-threaded code automatically.
n  Other compilers ignore the directives.

15-04-2011 MVP'11 - Aalborg University 5

Example

Run this in parallel with shared & private var.

15-04-2011 MVP'11 - Aalborg University 6

Example

Iterate in parallel in any order.

15-04-2011 MVP'11 - Aalborg University 7

Example

Locked access.

15-04-2011 MVP'11 - Aalborg University 8

Programming Model
n  Shared memory, thread based parallelism.
n  Explicit parallelism.
n  Fork-join model

15-04-2011 MVP'11 - Aalborg University 9

Programming Model
n  Fork-join

n  All OpenMP programs begin as a single process: the
master thread.
The master thread executes sequentially until the first
parallel region construct is encountered.

n  FORK: the master thread then creates a team of parallel
threads.

n  The statements in the program that are enclosed by the parallel
region construct are then executed in parallel among the various
team threads

n  JOIN: When the team threads complete the statements
in the parallel region construct, they synchronize and
terminate, leaving only the master thread

15-04-2011 MVP'11 - Aalborg University 10

Programming Model
n  Compiler directive based.

n  Nested parallelism.
n  Dynamic threads.
n  No support for I/O.

n  Memory model: relaxed consistency, flush to
maintain consistency.

15-04-2011 MVP'11 - Aalborg University 11

Peril-L Concepts
n  Parallelism – parallel for

n  independent iterations
n  certain types of for-loops only

n  Reductions – reduction(op,var)
n  split iterations of a loop and accumulate the

result automatically

count=0;
#pragma omp parallel for reduction(+,count)
for(i=0; i<length; i++)
{
 count +=(array[i]==3)?:1:0
}

15-04-2011 MVP'11 - Aalborg University 12

Parallel For

15-04-2011 MVP'11 - Aalborg University 13

Reduction

15-04-2011 MVP'11 - Aalborg University 14

Threads
n  Threads are created upon “parallel for”

n  pthread_create

n  Threads are joined at the end of the block –
implicit barrier
n  pthread_join
n  Can be avoided by

#pragma omp parallel for nowait
(useful if followed by another parallel for)

n  Atomicity
n  #pragma omp atomic

15-04-2011 MVP'11 - Aalborg University 15

Atomicity

Restricted operations.
Reason: They correspond to special assembly instructions.

15-04-2011 MVP'11 - Aalborg University 16

Critical Sections
n  #pragma omp exclusive(section_name)

{
 …

}
n  The name identifies the critical section.
n  Corresponds to locking/unlocking a given

mutex.
n  pthread_mutex_lock/pthread_mutex_unlock

15-04-2011 MVP'11 - Aalborg University 17

Sections
n  Sections specify task parallelism – independent

tasks.
n  #pragma omp sections

{
 #pragma omp section
 {
 Task_A();
 }
 #pragma omp section
 {
 Task_B();
 }
}

15-04-2011 MVP'11 - Aalborg University 18

Matrix Multiplication

void mult(const int *a, const int *b, int c, int n)
{
 int i;
 #pragma parallel for shared(a,b,c,n) private(i)
 for(i=0; i<n; ++i)
 {
 …loops on j & k
 }
}

15-04-2011 MVP'11 - Aalborg University 19

Other Synchronization Primitives

n  Barrier - #pragma omp barrier.
n  Tasks – creation (omp task) & wait for

completion (taskwait).

15-04-2011 MVP'11 - Aalborg University 20

Access to the OMP Runtime

#include <omp.h>

void omp_set_num_threads(int);
int omp_get_num_threads();
int omp_get_thread_num();
int omp_get_num_procs();
…

15-04-2011 MVP'11 - Aalborg University 21

Compiler
n  gcc 4.3.2 with –fopenmp option

n  installed on the system

n  Try yourself, best way to learn.
n  You will get some exercises on it.
n  Tutorials on www.openmp.org

