!'_ OpenMP

Alexandre David
1.2.05
adavid@cs.aau.dk

i Release History

C/IC++ 1.0 CIC++ 2.0
Fortran 1.0 Fortran 1.1 Fortran 2.0

OpenMP 2.5 OpenMP 3.0

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Some pictures from
https://computing.linl.gov/tutorials/openMP/

15-04-2011 MVP'11 - Aalborg University

i Goals

= Standardization:
= Standard among a variety of shared memory architectures/platforms

= Lean and Mean:

= Simple and limited set of directives for programming shared memory
machines. Significant parallelism can be implemented by using just 3
or 4 directives.
= Ease of Use:

= Capability to incrementally parallelize a serial program, unlike
message-passing libraries which typically require an all or nothing
approach.

= Capability to implement both coarse-grain and fine-grain parallelism.
= Portability:

= Supports Fortran (77, 90, and 95), C, and C++.

= Public forum for API and membership.

i Introduction

= Idea: Augment sequential program in minor
ways to gain parallelism.

= Directive based — using #pragma.
= Simple.
= More restrictive.

= C compiler that understands OpenMP will
generate multi-threaded code automatically.
= Other compilers ignore the directives.

Example

00 o Ul WM -

NN NNRERRRBRRR B2 2
W NN = O WO N0 WL WN = O Vv

int count3s()
{
int i, count p;
count=0;
#pragma omp parallel shared(array, count, length)\
private(count p)

{

count p=0;
#pragma omp parallel for private(i)
for(i=0; i<length; i++)
{

if(array[i1]==3)

{

count p++;

}
}
#pragma omp critical
{

count+=count p;

}

; Run this in parallel with shared & private var.

return count;

Example

00 o Ul WM -

NN NNRERRRBRRR B2 2
W NN = O WO N0 WL WN = O Vv

int count3s()

{

int i, count p;
count=0;

#pragma omp parallel shared(array, count, length)\

private(count p)

{

count p=0;

#pragma omp parallel for private(i)

for(i=0; i<length; i++)

{
if(array[i1]==3)
{

count p++;

}
}

#pragma omp critical

{

count+=count p;

}
}

return count;

Iterate in parallel in any order.

Example

1 int count3s()
2 A
3 int i, count p;
4 count=0;
5 #pragma omp parallel shared(array, count, length)\
6 private(count p)
7 {
8 count p=0;
9 #pragma omp parallel for private(i)
10 for(i=0; i<length; i++)
11 {
12 if(array[i1]==3)
13 {
14 count p++;
15 }
16 }
17 #pragma omp critical
18 {
19 count+=count p;
20 }
21 } Locked access.
22 return count;

N
w
—~

i Programming Model

= Shared memory, thread based parallelism.
= Explicit parallelism.
= Fork-join model

master
thread

{ parallel region } { parallel region }

15-04-2011 MVP'11 - Aalborg University

i Programming Model

= Fork-join
= All OpenMP programs begin as a single process: the
master thread.

The master thread executes sequentially until the first
parallel region construct is encountered.

= FORK: the master thread then creates a team of parallel

threads.

= The statements in the program that are enclosed by the parallel
region construct are then executed in parallel among the various
team threads
= JOIN: When the team threads complete the statements
in the parallel region construct, they synchronize and
terminate, leaving only the master thread

i Programming Model

= Compiler directive based.
= Nested parallelism.
= Dynamic threads.
= No support for I/O.

= Memory model: relaxed consistency, flush to
maintain consistency.

10

i Peril-L Concepts

= Parallelism — parallel for
= independent iterations
= certain types of for-loops only

= Reductions — reduction(op,var)

= Split iterations of a loop and accumulate the
result automatically

count=0;

#pragma omp parallel for reduction(+,count)
for(i=0; i<length; i++)

{

}

count +=(array[i]==3)?:1:0

11

i Parallel For

parallel for

#pragma omp parallel for
for (<var>=<exprl>; <var> <relop> <expr2>; <var>=<expr3>) (<body> }
Conditions:

Notes:

<var> must be a signed integer variable and the same in each instance.
<relop> must be one of <, <=, =>, >,
<expr2>, <expr3> must be a loop-invariant integer expression.

if <relop> is < or <=, <expr3> must increment each iteration; if <relop> is
>, >=, <expr3> must decrement each iteration.

<body> must be a basic block, that is, it has no other entries or exits.

Optional specifications on the pragma line include private and nowait.

A set of threads created for a parallel for will join at completion,
implying a barrier synchronization.

15-04-2011 MVP'11 - Aalborg University

12

reduction

Reduction

reduction (<op>:<list>)

Conditions:
B <op> is one of the operators in the accompanying table; its identity is the
value that is used as the left operand for the first step of the reduce
operation.

m <[ist> is a set of variables into which the reduce accumulates; for example,
count in the Count 3s example.

Notes:
Fortran has several more <op> choices, including min and max.

<op> Identity
+ 0
* 1
- 0
& ~0

&&

i Threads

= Threads are created upon “parallel for”
= pthread_create

= Threads are joined at the end of the block —
implicit barrier
= pthread_join

= Can be avoided by
#pragma omp parallel for nowait
(useful if followed by another parallel for)

= Atomicity
= #pragma omp atomic

14

i Atomicity

atomic

#pragma omp atomic
<var> <op> <expr> | <expr>++ | <expr>-- | ++<expr> | --<expr>

Result:
The statement following the pragma becomes uninterruptible.

Conditions:
® <yar>is a program variable.
B <op>is one of the operations: +=, -=, *=, /=, <<=,>>=, &=, |=, "=

B <expr> is any legal expression.

Notes:
Use of atomic in a loop can have serious performance implications.

Restricted operations.
Reason: They correspond to special assembly instructions.

15-04-2011 MVP'11 - Aalborg University 15

i Critical Sections

= #pragma omp exclusive(section_name)

1
y

= The name identifies the critical section.

= Corresponds to locking/unlocking a given
mutex.

« pthread_mutex_lock/pthread_mutex_unlock

16

i Sections

= Sections specify task parallelism — independent
tasks.

= #pragma omp sections

{

#pragma omp section

{
Task_A();

}

#pragma omp section

{
Task_B();

¥
}

17

i Matrix Multiplication

void mult(const int *a, const int *b, int ¢, int n)
{

int i;

#pragma parallel for shared(a,b,c,n) private(i)

for(i=0; i<n; ++i)

{

...loops on j & k

}

}

15-04-2011 MVP'11 - Aalborg University

18

i Other Synchronization Primitives

= Barrier - #pragma omp barrier.

= Tasks — creation (omp task) & wait for
completion (taskwait).

19

i Access to the OMP Runtime

#include <omp.h>

void omp_set_num_threads(int);
int omp_get_num_threads();

int omp_get_thread_num();

int omp_get_num_procs();

i Compiler

= gcc 4.3.2 with -fopenmp option
= installed on the system

= [ry yourself, best way to learn.
= You will get some exercises on it.
= Tutorials on www.openmp.org

21

