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Basics
A sequential algorithm is evaluated by its 
runtime in function of its input size.

O(f(n)), Ω(f(n)), Θ(f(n)).

The asymptotic runtime is independent of the 
platform. Analysis “at a constant factor”.
A parallel algorithm has more parameters.
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Basics
A parallel algorithm is evaluated by its 
runtime in function of

the input size,
the number of processors,
the communication parameters.

Which performance measures?
Compare to which (serial version) baseline?
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Sources of Performance Loss
In practice, E<1.

Overhead (sync, communication, threads).
WS – Amdahl’s law.
Idling & contention.
Overhead function: T0=pTP-TS

Ex. count3s:
false sharing (communication) was avoidable

at the cost of memory

incrementing global counter unavoidable
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Example – Amdahl’s Law
Assume 20% not parallelizable.
For P processors
TP=1/S*TS+(1-1/S)*TS/P

T2=0.2TS+0.8TS/2=0.6TS
S=1/0.6
E2=S/2=0.83

T10=0.2TS+0.8TS/10=0.28TS
S=1/0.28
E2=S/10=0.36
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Overheads
Communication overheads

explicit (send/recv) + implicit (threads, false 
sharing…)

Synchronization
locks, barriers, semaphores

Extra computations
typically reductions

Memory
extra padding, local copies
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Scalability
As seen in Amdahl’s law:

Speedup inherently limited by the problem size.
Increase p, lose speedup.
Increase the size, gain speedup – in general WS
grows slowly with the size.

The question is:
How much do you need to increase the size in 
function of p to keep the same efficiency?
Measured by isoefficiency function
= measure of scalability.
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Scalability
Suppose TS=cnx.
We increase the problem size by m and we 
use p processors. But we want to keep the 
same execution time.

c(mn)x/p=cnx – optimistic.
p=mx

m=p1/x.
x=4, m=100, we need 108 processors.
Example in the book is miss-leading: The 
problem comes from the complexity of the 
algorithm.



18-03-2011 MVP'11 - Aalborg University 9

Contention
Special because not seen directly in the code.
Comes for behavior.
Difficult to replicate.
Sources:

excessive loads on memory, e.g., spin-lock
central locks – granularity problems
effects on the architecture – flood the bus
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Idling
Waiting for locks.
Data dependencies.

See previous examples (sum, prefix).
May need algorithm rewrites.

Load balancing.
Memory bound computations – locality.
Detecting termination!
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Parallel Structure
Identify dependencies

task dependency graph
data dependencies
flow dependency: read after write – true dep.
anti-dependency: write after read          memory
output dependency: write after write      reuse
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Example
Flow dependency.

Cannot be removed.

Anti-dependency.
Can be removed by 
renaming/rewriting.

sum=a+1;
first=sum*scale1;
sum=b+1;
second=sum*scale2;

first=(a+1)*scale1;
second=(b+1)*scale2;
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Example
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Example
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Granularity
Size of

tasks
data associated to threads
→ determines frequency of interactions.

Fine grain: small independent computations/small 
data sets → frequent interactions.

Multi-core – hardware support, low latency.

Coarse grain: large independent computations/large 
data sets → infrequent interactions.

MPI – high latency.

Opposite to load balancing goals.
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Locality
Temporal locality.
Spatial locality.
Use cache/paging efficiently.

Even more important for parallel programs.

Locality effect: Reduce dependencies.
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Trade-offs
Identify the 10% code taking 90% time.

Not enough for parallel programs but still useful.

Computation vs. Communication
Overlap com. & comp. – trylocks, async I/O.
Redundant comp. – recompute (cheaper than 
communication).

Reduces dependencies & sync. costs.

Memory vs. Parallelism
private memory – copy – improve locality
padding – avoid false sharing
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Trade-offs
High parallelism vs. overhead

need to combine/reduce results eventually
load balance – communication
granularity – batching is useful for 
communication but may result in idling
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Measuring Performance
Execution time, FLOPS – limited.
Speedup, efficiency – useful.

Superlinear speedup: either performance 
anomalies (different work) or increased locality 
(caches) that overcomes overheads.
Theoretically S≤p.
Speedup may vary over different machines.
True vs. relative speedup.
Cold starts – cache/page issues.
I/O activities.
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Speedup – Example

1 processing element:
14tc.
2 processing elements:
5tc.
Speedup: 2.8.

Depth-first Search
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Example
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Scalability of Parallel Systems
In practice: Develop and test on small 
systems with small problems.
Problem: What happens for the real large 
problems on large systems?

Difficult to extrapolate results.
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Problem with Extrapolation
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Rewriting
Rewrite efficiency (E):

What does it tell us?
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Note: T0=f(p) increasing.

TS=W
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Scalable Parallel System
Can maintain its efficiency constant when 
increasing the number of processors and the 
size of the problem.
In many cases T0=f(TS,p) and grows sub-
linearly with TS. It can be possible to increase 
p and TS and keep E constant.
Scalability measures the ability to increase 
speedup in function of p.
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Cost-Optimality
Cost optimal parallel systems have efficiency 
Θ(1).
Scalability and cost-optimality are linked.
Adding number example: becomes cost-
optimal when n=Ω(p logp).
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Scalable System
Efficiency can be kept constant when

the number of processors increases and
the problem size increases.

At which rate the problem size should 
increase with the number of processors?

The rate determines the degree of scalability.

In complexity, problem size = size of the 
input. Here = number of basic operations 
to solve the problem. Noted W (~TS).
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Isoefficiency Function
For scalable systems efficiency can be kept 
constant if T0/W is kept constant.

For a target E

Keep this constant

Isoefficiency function

W=KT0(W,p)How to increase work in function of
p to keep the same efficiency (iso)?
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Example
Adding number: We saw that T0=2p logp.
We get W=K 2p logp.
If we increase p to p’, the problem size must 
be increased by (p’ logp’ )/(p logp) to keep 
the same efficiency.

Increase p by p’/p.
Increase n by (p’ logp’ )/(p logp).
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Example

Isoefficiency = Θ(p3).
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Why?
After isoefficiency analysis, we can test our 
parallel program with few processors and 
then predict what will happen for larger 
systems.
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Link to Cost-Optimality

A parallel system is cost-optimal iff
pTP=Θ(W).

A parallel system is cost-optimal iff
its overhead (T0) does not exceed
(asymptotically) the problem size.
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Minimum Execution Time
If TP in function of p, we want its 
minimum. Find p0 s.t. dTP/dp=0.
Adding n numbers: TP=n/p+2 logp.
→ p0=n/2.
→ TP

min=2 logn.
Fastest but not necessary cost-optimal.
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Asymptotic Analysis of Parallel 
Programs

Best?
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Other Scalability Metrics
Scaled speedup: speedup when problem size 
increases linearly in function of p.

Motivation: constraints such as memory linear in 
function of p.
Time and memory constrained.


