!'_ Reasoning about Performance

Alexandre David
1.2.05
adavid@cs.aau.dk

i Basics

= A sequential algorithm is evaluated by its
runtime in function of its input size.

= O(f(n)), Q(f(n)), ©(f(n)).
= The asymptotic runtime is independent of the
platform. Analysis “at a constant factor”.

= A parallel algorithm has more parameters.

i Basics

= A parallel algorithm is evaluated by its
runtime in function of

= the Input size,

= the number of processors,

= the communication parameters.
= Which performance measures?

= Compare to which (serial version) baseline?

i Sources of Performance Loss

= In practice, E<1.
= Overhead (sync, communication, threads).
=« We — Amdahl’s law.
= Idling & contention.
= Overhead function: Ty=pT,-T¢

s EX. count3s:

= false sharing (communication) was avoidable
= at the cost of memory

= incrementing global counter unavoidable

i Example — Amdahl’s Law

= Assume 20% not parallelizable.

m For P processors

T,=0.2T<+0.8T</2=0.6T
S=1/0.6
E,=S/2=0.83

T,,=0.2T<+0.8T</10=0.28T,
S=1/0.28
E,=S/10=0.36

18-03-2011 MVP'11 - Aalborg University

i Overheads

= Communication overheads

= explicit (send/recv) + implicit (threads, false
sharing...)

= Synchronization

= locks, barriers, semaphores
= Extra computations

= typically reductions

= Memory
= extra padding, local copies

i Scalability

= As seen in Amdahl’s law:

= Speedup inherently limited by the problem size.

= Increase p, lose speedup.
= Increase the size, gain speedup

— in general Wq

grows slowly with the size.
= The question is:

= How much do you need to increase the size in
function of p to keep the same efficiency?

= Measured by isoefficiency function

= measure of scalability.

i Scalability

= Suppose Tc=cn*.
= We increase the problem size by m and we
use p processors. But we want to keep the
same execution time.
= ¢(mn)*/p=cn* — optimistic.
p=m*
m=pl/x,
= X=4, m=100, we need 108 processors.

=« Example in the book is miss-leading: The
problem comes from the complexity of the
algorithm.

i Contention

= Special because not seen directly in the code.
= Comes for behavior.
= Difficult to replicate.

= Sources:
= excessive loads on memory, e.g., spin-lock
= central locks — granularity problems
= effects on the architecture — flood the bus

i Idling

= Waiting for locks.

= Data dependencies.
= See previous examples (sum, prefix).
= May need algorithm rewrites.

= Load balancing.
= Memory bound computations — locality.
= Detecting termination!

10

i Parallel Structure

= Identify dependencies
= task dependency graph

= data dependencies
flow dependency: read after write — true dep.
anti-dependency: write after read memory
output dependency: write after write reuse

11

i Example

= Flow dependency.
= Cannot be removed.
= Anti-dependency.

=« Can be removed by
renaming/rewriting.

sum=a+1;
first:sutfﬁca;;12’2>
sum=b+1; ////’;>

second=sum*scale?;

first=(a+l)*scalel;
second=(b+1)*scale2;

12

Example

Thread 2

Thread 1
count<=J0
load count
iIncrement
store count
—___|count=1
—-_

count<2

= |0ad count
increment
store count

18-03-2011

MVP'11 - Aalborg University

Time

13

i Example

f()

-~

f()

N

fC)

/

f()

Z O\

f()

7N

(@ t

18-03-2011

ot b b oty tg b

N

N

f)

P

PN

f()

VN

(b) -I:D t| 'tg

MVP'11 - Aalborg University

(

f()

.

f()

PN

f()

f()

2N N

ts tg t,

14

i Granularity

= Size of
= tasks
« data associated to threads
= — determines frequency of interactions.

= Fine grain: small independent computations/small
data sets — frequent interactions.
= Multi-core — hardware support, low latency.

= Coarse grain: large independent computations/large
data sets — infrequent interactions.

=« MPI — high latency.
= Opposite to load balancing goals.

15

i Locality

= Temporal locality.
= Spatial locality.

= Use cache/paging efficiently.
=« Even more important for parallel programs.

= Locality effect: Reduce dependencies.

16

i Trade-offs

= Identify the 10% code taking 90% time.
= Not enough for parallel programs but still useful.

= Computation vs. Communication
= Overlap com. & comp. — trylocks, async I/O.

= Redundant comp. — recompute (cheaper than
communication).

= Reduces dependencies & sync. costs.

= Memory vs. Parallelism
= private memory — copy — improve locality
= padding — avoid false sharing

17

i Trade-offs

= High parallelism vs. overhead
= Need to combine/reduce results eventually
= load balance — communication

= granularity — batching is useful for
communication but may result in idling

18

i Measuring Performance

= Execution time, FLOPS — limited.

= Speedup, efficiency — useful.

= Superlinear speedup: either performance
anomalies (different work) or increased locality
(caches) that overcomes overheads.
Theoretically S<p.

= Speedup may vary over different machines.
= True vs. relative speedup.

= Cold starts — cache/page issues.

= [/O activities.

19

i Speedup — Example

Depth-first Search

1 processing element:
14+ ..

O 2 processing elements:
bt..

O Speedup: 2.8.

20

i Example

Performance
_—
. _,,./
/// f
/ .-'-"""
Speed _—
peedup /___._-
/.«’ "
e
Z 8
/
0 8 64
Processors
Program 1
Program 2

18-03-2011 MVP'11 - Aalborg University

21

i Scalability of Parallel Systems

= In practice: Develop and test on small
systems with small problems.

= Problem: What happens for the real large
problems on large systems?

= Difficult to extrapolate results.

22

i Problem with Extrapolation

S
Binary exchange ——
2-D transpose -
3-D transpose ----

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

n%

i Rewriting

= Rewrite efficiency (E):

S T,

E_

. pr :TO TS

= What does it tell us?

3 _B_prjE:

T. 1w

Note: T,=I(p) increasing.

24

i Scalable Parallel System

= Can maintain its efficiency constant when
increasing the number of processors and the
size of the problem.

= In many cases 7,=f(7yp)and grows sub-
linearly with T.. It can be possible to increase
p and T and keep E constant.

= Scalability measures the ability to increase
speedup in function of p.

25

i Cost-Optimality

= Cost optimal parallel systems have efficiency
O(1).
= Scalability and cost-optimality are linked.

= Adding number example: becomes cost-
optimal when n=Q(p logp).

26

i Scalable System

= Efficiency can be kept constant when
= the number of processors increases and
= the problem size increases.
= At which rate the problem size should
increase with the number of processors?
= The rate determines the degree of scalability.
= In complexity, problem size = size of the

input. Here = number of basic operations
to solve the problem. Noted W (~Ty).

27

i [soefficiency Function

= For scalable systems efficiency can be kept
constant if T,/W is kept constant.

B _ 1

1 + To(W,p)/W’
T.(W,p) 1-E
W E °

E
W — ®

How to increase work in function of -
p to keep the same efficiency (/50)? W=KTo(W.p)

For a target E

Keep this constant

Isoefficiency function

28

i Example

= Adding number: We saw that T,=2p logp.
= We get W=K2plogp.
= If we increase pto p; the problem size must

be increased by (p’logp”)/(p logp) to keep
the same efficiency.

= Increase p by p/p.
= Increase nby (p’logp”)/(plogp).

29

18-03-2011

Isoefficiency = ©(p7).

MVP'11 - Aalborg University

30

i Why?

= After isoefficiency analysis, we can test our
parallel program with few processors and
then predict what will happen for larger
systems.

31

i Link to Cost-Optimality

A parallel system is cost-optimal iff

pT=O(W)
W+T,(W,p) = O(W)
T,(W,p) = O(W)
W = Q(T,(W,p))

A parallel system is cost-optimal iff
its overhead (T,) does not exceed
(asymptotically) the problem size.

32

i Minimum Execution Time

= If T, _in function of p, we want its
minimum. Find p, s.t. d7,/ap=0.

= Adding n numbers: 7,=n/p+2logp.
— p,=n/2.
— T/ =2logn.

= Fastest but not necessary cost-optimal.

33

Asymptotic Analysis of Parallel
Programs

Table 5.2 Comparison of four different algorithms for sorting a given list of numbers. The table
shows number of processing elements, parallel runtime, speedup, efficiency and the p 7'p product.

Algorithm Al A2 A3 A4

p n’ logn n Jn
Tp 1 n Jn Jnlogn
S nlogn logn Jnlogn /n
E log n 1 log n 1
n vn
pTp n’ nlogn n'?> nlogn

34

i Other Scalability Metrics

= Scaled speedup: speedup when problem size
increases linearly in function of p.

= Motivation: constraints such as memory linear in
function of p.

= Time and memory constrained.

35

