
Reasoning about Performance

Alexandre David
1.2.05

adavid@cs.aau.dk

18-03-2011 MVP'11 - Aalborg University 2

Basics
A sequential algorithm is evaluated by its
runtime in function of its input size.

O(f(n)), Ω(f(n)), Θ(f(n)).

The asymptotic runtime is independent of the
platform. Analysis “at a constant factor”.
A parallel algorithm has more parameters.

18-03-2011 MVP'11 - Aalborg University 3

Basics
A parallel algorithm is evaluated by its
runtime in function of

the input size,
the number of processors,
the communication parameters.

Which performance measures?
Compare to which (serial version) baseline?

18-03-2011 MVP'11 - Aalborg University 4

Sources of Performance Loss
In practice, E<1.

Overhead (sync, communication, threads).
WS – Amdahl’s law.
Idling & contention.
Overhead function: T0=pTP-TS

Ex. count3s:
false sharing (communication) was avoidable

at the cost of memory

incrementing global counter unavoidable

18-03-2011 MVP'11 - Aalborg University 5

Example – Amdahl’s Law
Assume 20% not parallelizable.
For P processors
TP=1/S*TS+(1-1/S)*TS/P

T2=0.2TS+0.8TS/2=0.6TS
S=1/0.6
E2=S/2=0.83

T10=0.2TS+0.8TS/10=0.28TS
S=1/0.28
E2=S/10=0.36

18-03-2011 MVP'11 - Aalborg University 6

Overheads
Communication overheads

explicit (send/recv) + implicit (threads, false
sharing…)

Synchronization
locks, barriers, semaphores

Extra computations
typically reductions

Memory
extra padding, local copies

18-03-2011 MVP'11 - Aalborg University 7

Scalability
As seen in Amdahl’s law:

Speedup inherently limited by the problem size.
Increase p, lose speedup.
Increase the size, gain speedup – in general WS
grows slowly with the size.

The question is:
How much do you need to increase the size in
function of p to keep the same efficiency?
Measured by isoefficiency function
= measure of scalability.

18-03-2011 MVP'11 - Aalborg University 8

Scalability
Suppose TS=cnx.
We increase the problem size by m and we
use p processors. But we want to keep the
same execution time.

c(mn)x/p=cnx – optimistic.
p=mx

m=p1/x.
x=4, m=100, we need 108 processors.
Example in the book is miss-leading: The
problem comes from the complexity of the
algorithm.

18-03-2011 MVP'11 - Aalborg University 9

Contention
Special because not seen directly in the code.
Comes for behavior.
Difficult to replicate.
Sources:

excessive loads on memory, e.g., spin-lock
central locks – granularity problems
effects on the architecture – flood the bus

18-03-2011 MVP'11 - Aalborg University 10

Idling
Waiting for locks.
Data dependencies.

See previous examples (sum, prefix).
May need algorithm rewrites.

Load balancing.
Memory bound computations – locality.
Detecting termination!

18-03-2011 MVP'11 - Aalborg University 11

Parallel Structure
Identify dependencies

task dependency graph
data dependencies
flow dependency: read after write – true dep.
anti-dependency: write after read memory
output dependency: write after write reuse

18-03-2011 MVP'11 - Aalborg University 12

Example
Flow dependency.

Cannot be removed.

Anti-dependency.
Can be removed by
renaming/rewriting.

sum=a+1;
first=sum*scale1;
sum=b+1;
second=sum*scale2;

first=(a+1)*scale1;
second=(b+1)*scale2;

18-03-2011 MVP'11 - Aalborg University 13

Example

18-03-2011 MVP'11 - Aalborg University 14

Example

18-03-2011 MVP'11 - Aalborg University 15

Granularity
Size of

tasks
data associated to threads
→ determines frequency of interactions.

Fine grain: small independent computations/small
data sets → frequent interactions.

Multi-core – hardware support, low latency.

Coarse grain: large independent computations/large
data sets → infrequent interactions.

MPI – high latency.

Opposite to load balancing goals.

18-03-2011 MVP'11 - Aalborg University 16

Locality
Temporal locality.
Spatial locality.
Use cache/paging efficiently.

Even more important for parallel programs.

Locality effect: Reduce dependencies.

18-03-2011 MVP'11 - Aalborg University 17

Trade-offs
Identify the 10% code taking 90% time.

Not enough for parallel programs but still useful.

Computation vs. Communication
Overlap com. & comp. – trylocks, async I/O.
Redundant comp. – recompute (cheaper than
communication).

Reduces dependencies & sync. costs.

Memory vs. Parallelism
private memory – copy – improve locality
padding – avoid false sharing

18-03-2011 MVP'11 - Aalborg University 18

Trade-offs
High parallelism vs. overhead

need to combine/reduce results eventually
load balance – communication
granularity – batching is useful for
communication but may result in idling

18-03-2011 MVP'11 - Aalborg University 19

Measuring Performance
Execution time, FLOPS – limited.
Speedup, efficiency – useful.

Superlinear speedup: either performance
anomalies (different work) or increased locality
(caches) that overcomes overheads.
Theoretically S≤p.
Speedup may vary over different machines.
True vs. relative speedup.
Cold starts – cache/page issues.
I/O activities.

18-03-2011 MVP'11 - Aalborg University 20

Speedup – Example

1 processing element:
14tc.
2 processing elements:
5tc.
Speedup: 2.8.

Depth-first Search

18-03-2011 MVP'11 - Aalborg University 21

Example

18-03-2011 MVP'11 - Aalborg University 22

Scalability of Parallel Systems
In practice: Develop and test on small
systems with small problems.
Problem: What happens for the real large
problems on large systems?

Difficult to extrapolate results.

18-03-2011 MVP'11 - Aalborg University 23

Problem with Extrapolation

18-03-2011 MVP'11 - Aalborg University 24

Rewriting
Rewrite efficiency (E):

What does it tell us?
S

Sp

p

S

T
TE

TTpT

pT
T

p
SE

0
0

1

1

+
=⇒

⎪
⎩

⎪
⎨

⎧

+=

==

Note: T0=f(p) increasing.

TS=W

18-03-2011 MVP'11 - Aalborg University 25

Scalable Parallel System
Can maintain its efficiency constant when
increasing the number of processors and the
size of the problem.
In many cases T0=f(TS,p) and grows sub-
linearly with TS. It can be possible to increase
p and TS and keep E constant.
Scalability measures the ability to increase
speedup in function of p.

18-03-2011 MVP'11 - Aalborg University 26

Cost-Optimality
Cost optimal parallel systems have efficiency
Θ(1).
Scalability and cost-optimality are linked.
Adding number example: becomes cost-
optimal when n=Ω(p logp).

18-03-2011 MVP'11 - Aalborg University 27

Scalable System
Efficiency can be kept constant when

the number of processors increases and
the problem size increases.

At which rate the problem size should
increase with the number of processors?

The rate determines the degree of scalability.

In complexity, problem size = size of the
input. Here = number of basic operations
to solve the problem. Noted W (~TS).

18-03-2011 MVP'11 - Aalborg University 28

Isoefficiency Function
For scalable systems efficiency can be kept
constant if T0/W is kept constant.

For a target E

Keep this constant

Isoefficiency function

W=KT0(W,p)How to increase work in function of
p to keep the same efficiency (iso)?

18-03-2011 MVP'11 - Aalborg University 29

Example
Adding number: We saw that T0=2p logp.
We get W=K 2p logp.
If we increase p to p’, the problem size must
be increased by (p’ logp’)/(p logp) to keep
the same efficiency.

Increase p by p’/p.
Increase n by (p’ logp’)/(p logp).

18-03-2011 MVP'11 - Aalborg University 30

Example

Isoefficiency = Θ(p3).

18-03-2011 MVP'11 - Aalborg University 31

Why?
After isoefficiency analysis, we can test our
parallel program with few processors and
then predict what will happen for larger
systems.

18-03-2011 MVP'11 - Aalborg University 32

Link to Cost-Optimality

A parallel system is cost-optimal iff
pTP=Θ(W).

A parallel system is cost-optimal iff
its overhead (T0) does not exceed
(asymptotically) the problem size.

18-03-2011 MVP'11 - Aalborg University 33

Minimum Execution Time
If TP in function of p, we want its
minimum. Find p0 s.t. dTP/dp=0.
Adding n numbers: TP=n/p+2 logp.
→ p0=n/2.
→ TP

min=2 logn.
Fastest but not necessary cost-optimal.

18-03-2011 MVP'11 - Aalborg University 34

Asymptotic Analysis of Parallel
Programs

Best?

18-03-2011 MVP'11 - Aalborg University 35

Other Scalability Metrics
Scaled speedup: speedup when problem size
increases linearly in function of p.

Motivation: constraints such as memory linear in
function of p.
Time and memory constrained.

