
Writing Parallel Programs

Alexandre David
1.2.05

adavid@cs.aau.dk

14-03-2011 MVP'11 - Aalborg University 2

Disclaimer
The only way to learn it is to practice.

C/C#/Java syntax similar, same concepts.
Once you get it, you can apply that to different
languages.

For those who still complain:
AAU educates software engineers & computer
scientists, not C# programmers.

14-03-2011 MVP'11 - Aalborg University 3

Your Practice
Assignment 1: Understand influence of
caches.

Locality is important, avoid false sharing.

Assignment 2: Basic pthread exercises.
Load balancing.

Assignment 3: More pthread.
Practice synchronization.

Later: MPI, OpenMP.

14-03-2011 MVP'11 - Aalborg University 4

Recommendations
Incremental development.

Improve working version.
Use cvs/subversion.

Useful technique: binary search.

Focus on the parallel structure.
Fill in functional parts, don’t get lost in details.
Possible to debug the parallel parts & the
functional parts separately.

Beware of races.

14-03-2011 MVP'11 - Aalborg University 5

Example

Possible to develop
& test this without
specific functional
parts.
Parallel interactions
are source of
complexity & bugs.

14-03-2011 MVP'11 - Aalborg University 6

Writing Code
Rule 1: Do not optimize.

Write correct code first.
Efficiency comes from elegant & simple code.

Write extra code for testing
hooks in functions
test generation
data inspection
periodic checkpoints/log
instrument the code to find bottlenecks
use assertions

14-03-2011 MVP'11 - Aalborg University 7

Testing/Debugging
Get the “right” sized test cases.

In general larger tests compared to sequential
programs.

Functional debugging.
Use modeling tools.

14-03-2011 MVP'11 - Aalborg University 8

Performance Metrics
Execution time = time elapsed between

beginning and end of execution on a sequential
computer.
beginning of first processor and end of the last
processor on a parallel computer. TP.

14-03-2011 MVP'11 - Aalborg University 9

Performance Metrics
Understand what you are measuring
(real/user/sys).
Compare to the best available sequential
algorithm – don’t use p=1.

Speedup S=TS/TP. How much faster?
S≤p
Efficiency E=S/p. Normalized speedup.
E≤1

14-03-2011 MVP'11 - Aalborg University 10

Performance Metrics
Total parallel overhead.

Total time collectively spent by all processing
elements = pTP.
Time spent doing useful work (serial time) = TS.
Overhead function: TO = pTP-TS.
General function, contains all kinds of overheads.

14-03-2011 MVP'11 - Aalborg University 11

Performance Limitation
Amdahl’s Law:

Inherent sequential costs will limit speedup.

If a problem of size W has a serial
component Ws then
S≤W/Ws for any p.

Size W corresponds to the serial execution time.
TP=serial part+(non-serial part)/p
S=TS/TP=W/(WS+(W-WS)/p) ≤ W/WS.

Note: Problem size here = execution time to abstract
from particular problem complexities.

14-03-2011 MVP'11 - Aalborg University 12

Experiments
Difficult to get consistent results

scheduling affect execution time
scheduling may affect the results (search
problems)
average or median (better)

Don’t conclude too quickly
take into account scalability
size of the problem + p

14-03-2011 MVP'11 - Aalborg University 13

Useful Questions
What are the individual phases?

How to they scale?
What are the bottlenecks?

How do they synchronize?

How much parallelism do we have?

How much memory is used?
Are there trade-offs to improve performance?
(granularity)

14-03-2011 MVP'11 - Aalborg University 14

Experimental Methodology
Hypothesis to find performance bottlenecks

load imbalance
lock contention
communication
false sharing

Emphasize reproducibility.
Be aware that instrumentation affects the
behavior.

14-03-2011 MVP'11 - Aalborg University 15

Example

Reductions: Good place to put a barrier to capture
the state of the system.

