!'_ Writing Parallel Programs

Alexandre David
1.2.05
adavid@cs.aau.dk

i Disclaimer

= The only way to learn it is to practice.
« C/C#/Java syntax similar, same concepts.

= Once you get it, you can apply that to different
languages.

= For those who still complain:

= AAU educates software engineers & computer
scientists, not C# programmers.

i Your Practice

= Assignment 1: Understand influence of
caches.

=« Locality is important, avoid false sharing.
= Assignment 2: Basic pthread exercises.
= Load balancing.
= Assignment 3: More pthread.
= Practice synchronization.

= Later: MPI, OpenMP.

i Recommendations

= Incremental development.
« Improve working version.

= Use cvs/subversion.
= Useful technique: binary search.

= Focus on the parallel structure.

= Fill in functional parts, don't get lost in details.

= Possible to debug the parallel parts & the
functional parts separately.

= Beware of races.

i Example

Possible to develop
& test this without
specific functional
parts.

Parallel interactions .,

are source of
complexity & bugs.

Spawntaig;,ff’;77
- -

Set-up

exchange

Redu

— l—

CEK

Print

N/

i Writing Code

= Rule 1: Do not optimize.
= Write correct code first.
» Efficiency comes from elegant & simple code.

= Write extra code for testing
= hooks in functions
= test generation
= data inspection
= periodic checkpoints/log
= instrument the code to find bottlenecks
= Use assertions

i Testing/Debugging

= Get the “right” sized test cases.

= In general larger tests compared to sequential
programs.

= Functional debugging.
= Use modeling tools.

i Performance Metrics

= Execution time = time elapsed between

= beginning and end of execution on a sequential
computer.

= beginning of first processor and end of the last
processor on a parallel computer. T.

i Performance Metrics

= Understand what you are measuring
(real/user/sys).
= Compare to the best available sequential
algorithm — dont use p=1.
= Speedup S=T¢/T,. How much faster?
S<p

« Efficiency E=S/p. Normalized speedup.
E<1

i Performance Metrics

= Total parallel overhead.

« Total time collectively spent by all processing
elements = p7,

= Time spent doing useful work (serial time) = Te.

= Overhead function: 7, = p7,-7s
General function, contains all kinds of overheads.

10

i Performance Limitation

= Amdahl’s Law:
= Inherent sequential costs will limit speedup.

If a problem of size W has a serial
component W, then
S<W/W, for any p.

Size W corresponds to the serial execution time.
Tp=serial part+(non-serial part)/p
S=T/Tp=W/(Ws+(W-W.)/p) s W/W,.

Note: Problem size here = execution time to abstract
from particular problem complexities.

11

i Experiments

= Difficult to get consistent results
= scheduling affect execution time

= scheduling may affect the results (search
problems)

= average or median (better)
= Don’t conclude too quickly

=« take into account scalability
size of the problem + p

12

i Useful Questions

= What are the individual phases?

=« How to they scale?

=« What are the bottlenecks?
=« How do they synchronize?

= How much parallelism do we have?
= How much memory is used?

= Are there trade-offs to improve performance?
(granularity)

13

i Experimental Methodology

= Hypothesis to find performance bottlenecks
= load imbalance
= lock contention
= communication
= false sharing

= Emphasize reproducibility.

= Be aware that instrumentation affects the
behavior.

14

i Example

lteration lteration lteration
test test test
Y Y Y
Time

Reductions: Good place to put a barrier to capture
the state of the system.

15

