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i Introduction

= Focus on data parallelism, scale with size.
= Task parallelism limited.

= Notion of scalability is fuzzy in the book.
= More precision later.

= Idea: You lose efficiency with # of processors,
gain efficiency with the size of the problem.
Scalability measures the ratio.

= YOou can experiment with assignment 2 to see that.



i In Practice...

= Typical tasks:
= ldentify concurrent works.
= Map them to processors.
= Distribute inputs, outputs, and other data.
= Manage shared resources.
= Synchronize the processors.



i Basic Principles

= Large blocks of independent computations.

= Rare, seti@home.
« Better when computations >> size of data.

=« Matrix multiplication too.
= Good performance recipe:

= Minimize interaction (= communication)
= maximize locality (= blocks of computation)




i Minimizing Interaction Overheads

= Maximize data locality.
= Minimize volume of data-exchange.
= Minimize frequency of interactions.

= Minimize contention and hot spots.
= Share a link, same memory block, etc...

= Re-design original algorithm to change the
Interaction pattern.

= Use task interaction graph to help.



i Minimizing Interaction Overheads

= Overlapping computations with interactions
— to reduce idling.

= |nitiate interactions in advance.
= Non-blocking communications.
= Multi-threading.

= Replicating data or computation.

= Group communication instead of point to
point.

= Overlapping interactions.



i Decomposing Problems

= Decomposition into concurrent tasks.
= NO unique solution.
= Different sizes.

= Decomposition illustrated as a directed graph:
= Nodes = tasks.
= Edges = dependency.

A Task dependency graph




i Example: Matrix * Vector

Task dependency graph?

Matrix

N tasks, 1 task/row:
\

L ovlyyy X Vector
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Example: database query processing

MODEL = " " CIVIC'' AND YEAR = 2001 AND
(COLOR =" "GREEN'' OR COLOR = " " WHITE)

ID# Model Year Color Dealer Price

4523 2002 Blue MN $18,000
3476 | White IL $15,000
7623  Camry 2001 iEn NY $21,000
9834  Prius 2001 Green CA $18,000
5342 Altima 2001 GCreen FL $19,000
3845 Maxima 2001 Blue NY $22.000
8354 Accord 2000 Green VT $18.,000
4395 | Red CA $17,000
7352 Red WA $18,000

Table 3.1 A database storing information about used vehicles.



2l A solution

Nb COnC r
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L Civic AND 2001 AND (White OR Green)

Figure 3.2 The different tables and their dependencies in a query processing operation.
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=i Another Solution

ID# | Model
4523 Civic
6734 | Civic
4395 Civic
7352 | Civic

[ Civic

ID# | Year
7623 2001
6734 2001
5342 2001
3845 2001
4395 2001

2001

ID# | Color
ID# | Color 7623 | Green
9834 | Green
3476 | White 5342 | Green
6734 | White 8354 | Green

N,/

/
/

4

-

L

hlte OR Green )

i
( 2001 AND (White or Green) J

v

o

/e

( Civic AND 2001 AND (White OR Green) )

11



i Granularity

= Number and size of tasks.
= Fine-grained: many small tasks.
= Coarse-grained: few large tasks.

= Related: degree of concurrency.

(Nb. of tas

KS executable In parallel).

= Maximal degree of concurrency.

= Average C

egree of concurrency.
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i Coarser Matrix * Vector

Matrix

N tasks, 3 task/row: < =
SR
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! X Vector
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i Measures

= Average degree of concurrency Iif we take
INnto account varying armount of work?

= Critical path = longest directed path between
any start & finish nodes.

= Critical path length = sum of the weights of
nodes along this path.

= Average degree of concurrency = total
amount of work / critical path length.
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i Database example

Critical path (3). Critical path (4).

Critical path length = 27. Critical path length = 34.
Av. deg. of concurrency = 63/27.  Av. deg. of conc. = 64/34.

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1




i Example

Number of tasks: 15.

* Maximum degree of concurrency: 8.
* Critical path length: 4.
* Maximum possible speedup: 15/4.

* Minimum number of processes to reach
this speedup: 8.

* Maximum speedup if we limit the processes
to 2,4, and 8: 15/8, 3, and 15/4.
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i Example

Number of tasks: 15.

* Maximum degree of concurrency: 8.
* Critical path length: 4.
* Maximum possible speedup: 15/4.

* Minimum number of processes to reach
this speedup: 8.

* Maximum speedup if we limit the processes
to 2,4, and 8: 15/8, 3, and 15/4.
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i Example

Number of tasks: 14.

* Maximum degree of concurrency: 8.
* Critical path length: 7.
* Maximum possible speedup: 14/7.

* Minimum number of processes to reach
this speedup: 3.

* Maximum speedup if we limit the processes
to2,4,and 8: 14/8,14/7, and 14/7.
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* Maximum degree of concurrency: 2.
* Critical path length: 8.
* Maximum possible speedup: 15/8.

* Minimum number of processes to reach
this speedup: 2.

* Maximum speedup if we limit the processes
to 2,4, and 8: 15/8.

Number of tasks: 15.
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i Interaction Between Tasks

s Tasks often share data.

= Task interaction graph:
= Nodes = tasks.
= Edges = interaction.
= Optional weights.

= Task dependency graph is a sub-graph of the
task interaction graph.
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i Characteristics of Task Interactions

= One-way interactions.

= Only one task initiates and completes the
communication without interrupting the other
one.

= Two-way Interactions.
= Producer — consumer model.
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i Processes and Mapping

= Tasks run on Processors.

= Process: processing agent executing the
tasks. Not exactly like in your OS course.
Processes ~ threads here.

= Mapping = assignment of tasks to processes.

= APl exposes processes and binding to
processors not always controlled.
= Scheduling of threads is not controlled.
= What makes a good mapping?
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i Mapping example

Task 4 Task 3 Task 2 Task 1 Task 4 Task 3 Task 2 Task 1

(a) (b)

Figure 3.7 Mappings of the task graphs of Figure 3.5 onto four processes.



i Processes vS. processors

= Processes = logical computing agent.
= Processor = hardware computational unit.

= In general 1-1 correspondence but this model
gives better abstraction.

= Useful for hardware supporting multiple
programming paradigms.

How do you decompose?
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i Decomposition Technigques

= Recursive decomposition.
= Divide-and-conguer.

= Data decomposition.
= Large data structure.

= Exploratory decomposition.
= Search algorithms.

= Speculative decomposition.
=« Dependent choices in computations.
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i Recursive decomposition

= Problem solvable by divide-and-conquer:

= Decompose into sub-problems.
« Do it recursively.

= Combine the sub-solutions.
« Do it recursively.

= Concurrency: The sub-problems are solved In
parallel.
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+ readuce by block

i Schwartz’s Algorithm

= Reduce with maximal concurrency:
= one thread per pair (n/2)
= combine results in a tree structure

s Schwartz:
= one thread per n/p block of numbers
= local sums
= combine results in a tree structure
» follows recipe

Recursive Decomposition
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i Combining Results

I\
[
[
[
[
[
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int nodeval’[P];

Perll L A'all(lndex in (0..P-1))

full/empty int tally;
variable stride=1:

iIntermediate
value — constant whi le(stride<P)

1
amount of extra * ¢ (jndexw(2*stride)==0)
space {
tally += nodeval’[Index+stride];
L stride *= 2;
T }
else
1
nodeval ’ [ 1ndex]=tally;
break;
}
}

}
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i Reduce & Scan Abstractions

= Reduce: combine values to a single one.
= Almost always needed.

= Scan: prefix computation.

= Logic that performs sequential operations and
carries along intermediate results.

= Lesson: Try to use them as much as possible.

= Abstract them as functions.
= high-level, contain information
= may customize implementation (e.g. BlueGene).
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3

Small typo p130
A={0,2,4} = A={0,2,6}
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i Basic Structure

s ldea:

= Assume block allocation,

= Use Schwartz’s like algorithm,

» local variable — tally — stores intermediate results.
= Primitives:

« INIEQ) — Init tally

= accum() - local accumulation

= combine() — combines tally results

= X—-gen() - final answer
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i Example: + reduce

= INITE(): tally=0
= accum(tally,val): tally+=value

= combine(left,right): left+right sent to
parent

= reduce-gen(root): return
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i Reduce Basic Structure

reduceGen (root)

}

combine (left, right)

combine (left, right)

N

combine (left, right)

N

combine (left, right)

combine (left, right)

combine (left, right)

N

local

local local

N

N

combine (left, right)

local local

local local

Tally:

Operand: A

init() accum(tal, val) accum(tal, val) accum(tal, val)

|

ay

|

do dg

11+14-03-2011
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N

local
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General Reduce In Peril-L L

00 =1 oh N s W b =

int nodeval'([P];
int result:
forall(index in(0..P-1))

{

}

int myData[size)]=localize(dataarray[]);
int tally;
int stride=1;
tally=init ()
for(i=0; i<size; i++)
{
tally=accum (tally, myData[i]);
}
nodeval'[index]=tally;
while(stride < P)
{
if(index%(2*stride)==0)
{

nodeval'[index]=combine(nodeval'[index],

Global full/empty variables

Local portion of global data values
Initialize tally

Local accumulation

Send initially to parent

Begin logic for tree

Combine values globally

nodeval '[index+stride]);

stride=2*stride;
}

else

{
break:
}
s
if(index==0)
{
result=reduceGen (ncdeval'[0]);

}

Generate reduced value
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struct tally

{
float smallestl:
float smallest?2:

}:

tally init()

{
tally t;
t.smalleEtl=HhH_ELDAT;
t.smallestZ2=MAX FLOAT;
return t;

}

tally accum(tally t, float elem)

{
if(t.smalll>elem)

{
t.smallest2=t.smallestl:

t.smallestl=elem;

+
else

{

if(t.smallest2>elem)

{

t.smallestZ2=elem;
}

return t:

Smallest element
Second smallest

Initialize tally

Local accumulation

Is this a new smallest?

Is it a new second smallest?



24 lr(t.smallesti>elem) I5 1T @ new secona smallests

25 {
26 t.smallest2=elem;
27 }
28 return t;
29 }
30 3
31
—l 32 tally combine(tally left, tally right) Combine into “left” by
é 33 { accumulating right values
— 34 tally t;
& 35 t=accum(left, right.smallestl);
an 36 t=accum(t, right.smallest2);
c 37 return t;
"= 38
C 39
=— 40 float reduceGen(tally t)
41 {
T 42 return t.smallest2:
c
ay 43}
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i General Scan

= Difference with reduce:
= Need to pass intermediate results too.

= Propagate tally down the tree:
value from a parent = tally from the left sub-tree
of the parent.

= root has no parent — fix that

= |ldea:
= Up-sweep with reduce
= down-sweep to propagate tallys
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i Prefix Sum - sum

T
76
0|35
35 41
010 35| 66
10 o5 31 10
0| 7 10|25 35 | 48 66 | 72
Array 13
o B 3 15 10 13/ \18 5/ \4
Parallel prefix 7 10 05 35 48 66 79 76
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i Prefix Sum - prefix

41
/
/ 1391 66]
'/ ( 31 i |
ol 7 ¥ // \ 35][ 48] ,
Array / | /Y |/13 -
sements H B/ 10 18 | ».
Parallel prefix 7 10 05 35 48 66 79

10

76
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i Down-sweep

init( )
.

combine(left, parent)

l‘|.--

combine(left, parent)g‘ }mbine(leﬁ, parent)

o \

combine(left, parent)

combine(left, parent) combine(left, parent) combine(left, parent)

‘f
local

11+14-03-2011

N

> \\ * \ * \

local

local local local local local local

Parent tally:

scanGen(ptal, val) scanGen(ptal, val) scanGen(ptal, val)

result; I result, [ resuItH,E‘
Operand: A ai ai+1 ai+2

MVP'11 - Aalborg University
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i Scan In Peril-L

1 int nodeval'[P];

2 int ltally[P];

3 forall(index in(0..P-1))

4 {

5 int myData[size]=localize(operandArray[]);
6 int tally;

7 int ptally;

8 int stride=1:

9 tally=init ();
10 for(i=0; i<size; i++)
11 {
12 tally=accum (tally, myData[i]);
13 }
14 nodeval '[index]=tally;

15 while(stride<pP)

11+14-03-2011
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Global full/empty memory
Store left operand of combine

Local data values
Tally
Tally from parent

Initialize
Accumulate

Send initially to parent
Begin logic for tree
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16 {

17 if (index%(2*stride)==0)

18 { Combine

19 ltally[index+stride]=nodeval'[index];

20 nodeval'[index]=combine (ltally[index+stride],

21 nodeval'[index+stride]);

22 stride=2*stride;

23 }

24 else

25 {

26 break;

27 }

28 3

29 stride=P/2;

30 if (index==0)

31 {

32 ptally=nodeval'[0]; Clear existing up sweep value

33 nodeval'[0]=init (): Set init () as parent input

34 }

35 while(stride>1) Begin logic for tree descent

36 {

37 ptally=nodeval'[index]; Grab parent value

38 nodeval'[index]=ptally; Send it down to left

39 nodeval'[index+stride]= Send parent + left child right
combine (ptally, ltallv[index+stride]);

40 stride=stride/2; Go down to next level

41 }

42 for(i=0; i<size; i++)

43 {

44 myResult[i]=scanGen (ptally, myData[i]); Generate Scan

45 }

46 3}



i Lesson

= Structure the algorithm with reduce & scan.

= Use efficient implementations of reduce &
scan.
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i Data Decomposition

= 2 steps:
« Partition the data.
= Induce partition into tasks.

= How to partition data?
= Partition output data:
= Independent “sub-outputs”.

= Partition input data:
» Local computations, followed by combination.

= 1-D, 2-D, 3-D block decomposition.
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i Static Allocation of Work to Processes

s # of threads fixed but unknown.
= Allocate data to threads.
= Owner compute rule.

= Block allocation — maximize locality

= 1-D or 2-D depending on the communication
pattern — minimize communication
surface area to volume in favour of 2-D

46



i Owner-Compute Rule

= Process assigned to some data
= IS responsible for all computations associated
with it.
= Input data decomposition:

= All computations done on the (partitioned)
Input data are done by the process.

= Output data decomposition:

= All computations for the (partitioned) output
data are done by the process.
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1-D & 2-D Block Allocations
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(a) (b)
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i Overlap Regions

= Obtain data from neighbors.
= Compute locally.
= Avoid false sharing.

= Use local matrix
= NO special edge cases
= uniform indices
= batch communication cheaper
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i Overlap Regions
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i Cyclic & Block Cyclic

= Cyclic = round-Robin. Idea:
= Partition an array into many more blocks than available
Processes.
= Assign partitions (tasks) to processes in a round-robin
manner.
= —> each process gets several non adjacent blocks.

= Useful when computations are not proportional to
the data.
= ex: assignment 2
= otherwise poor load balance

= Good: load balance.
= Bad: more communication, break large blocks.
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i Example: LU factorization

= Non singular square matrix A (invertible).
= A=L*U.
= Useful for solving linear equations.

NN
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i LU factorization

In practice we work on A.
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N steps
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i Load Imbalance: LU-Decomposition

(a) (b)

Matrix inversion — similar.

(c)
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i 8X8 Array on 5 Processes
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i Block Cyclic Distribution
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Julia Sets
Assignment.: Mandelbrot
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{ Irregular Allocations

58
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i Randomized Distributions

Irregular distribution with regular mapping!
Not good.

59



i 1-D Randomized Distribution

V=1[0,1,2,3,4,5,6,7,8,9,10, 11] >Per'muTa’ri0n

random(V)=18,2,6,0,3,7, 11, 1,9, 5, 4, 10]

2 2 2 2 2 2 2 2 2 2 2

mapping=8 2 6 03 7 111 9 5 410
| | | | |

Po Py Py Pj

Figure 3.32 A one-dimensional randomized block mapping of 12 blocks onto four process (i.e.,
o = 3).
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i 2-D Randomized Distribution

0123 456789101112131415
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2-D block random distribution.

Block mapping.
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(c)
>

61



i Irregular Allocations

= Same Idea as overlap regions:
= get data local — /nspector
= local computations — executor
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i Dynamic Allocations

O Keys
= dynamic load balancing
= dynamic interactions
= choose right granularity of tasks

= Work queues
= €.¢g. producer/consumer
= centralized schemes with master/slave
» different queue orderings
= multiple queues — issues with load balancing
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i Graph Partitioning

= For sparse data structures and data
dependent interaction patterns.

= Numerical simulations. Discretize the problem
and represent it as a mesh.

= Sparse matrix: assign equal number of nodes
to processes & minimize interaction.

= Example: simulation of dispersion of a water
contaminant in Lake Superior.
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i Discretization
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Figure 3.34 A mesh used to model Lake Superior.
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i Partitioning Lake Superior

Random partitioning.  Partitioning with minimum

11+14-03-2011

edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.
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i Exploratory Decomposition - Trees

Exploration of
states.
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i Trees

= Useful data-structures.
= Usually constructed with pointers.

= Challenges for
= communication
= load balance on irregular trees
= If little communication among sub-trees:

= Allocate sub-trees to processes, copy the “cap”.
= All processes know the structure.
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{ Cap Copy & Subtree Allocation
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i Dynamic Allocations

= Dynamic & unpredictable trees.

= Search with different algorithms.
= Work queues useful.

= Pruning involves communication.

= Termination may be an issue!
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i Application to Game Search
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i Performance Anomalies

Work depends on the order of the searchl!

o ml gm w my m m w

T Solution/

Total serial work: 2m+1 Total serial work: m

Total parallel work: 1 Total parallel work: 4m
(a) (b)
Figure 3.19  Anillustration of anomalous speedups resulting from exploratory decomposition.
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i Search Orderings Issues

Breadth-first-search Depth-first-search
BFS DFS
( ) Gives shortest ( )
path but may
be more expensive

than heuristics or
random search.
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i Speculative Decomposition

= Dependencies between tasks are not known
a-priori.
= How to identify independent tasks?

= Conservative approach: identify tasks that are
guaranteed to be independent.

= Optimistic approach: schedule tasks even if we
are not sure — may roll-back later.
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