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Introduction
Focus on data parallelism, scale with size.

Task parallelism limited.

Notion of scalability is fuzzy in the book.
More precision later.
Idea: You lose efficiency with # of processors, 
gain efficiency with the size of the problem. 
Scalability measures the ratio.

You can experiment with assignment 2 to see that.
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In Practice…
Typical tasks:

Identify concurrent works.
Map them to processors.
Distribute inputs, outputs, and other data.
Manage shared resources.
Synchronize the processors.
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Basic Principles
Large blocks of independent computations.

Rare, seti@home.
Better when computations >> size of data.

Matrix multiplication too.

Good performance recipe:
minimize interaction (= communication)
maximize locality (= blocks of computation)
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Minimizing Interaction Overheads

Maximize data locality.
Minimize volume of data-exchange.
Minimize frequency of interactions.

Minimize contention and hot spots.
Share a link, same memory block, etc…
Re-design original algorithm to change the 
interaction pattern.
Use task interaction graph to help.
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Minimizing Interaction Overheads

Overlapping computations with interactions 
– to reduce idling.

Initiate interactions in advance.
Non-blocking communications.
Multi-threading.

Replicating data or computation.
Group communication instead of point to 
point.
Overlapping interactions.
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Decomposing Problems
Decomposition into concurrent tasks.

No unique solution.
Different sizes.
Decomposition illustrated as a directed graph:

Nodes = tasks.
Edges = dependency.

Task dependency graph!
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Example: Matrix * Vector

N tasks, 1 task/row:

Matrix

Ve
ct

or

Task dependency graph?



11+14-03-2011 MVP'11 - Aalborg University 9

Example: database query processing

MODEL = ``CIVIC'' AND YEAR = 2001 AND
(COLOR = ``GREEN'' OR COLOR = ``WHITE)
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Measure of concurrency?
Nb. of processors?Optimal?

A solution
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Another Solution

Better/worse?
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Granularity
Number and size of tasks.

Fine-grained: many small tasks.
Coarse-grained: few large tasks.

Related: degree of concurrency.
(Nb. of tasks executable in parallel).

Maximal degree of concurrency.
Average degree of concurrency.
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Coarser Matrix * Vector

N tasks, 3 task/row:

Matrix

Ve
ct

or
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Measures
Average degree of concurrency if we take 
into account varying amount of work?
Critical path = longest directed path between 
any start & finish nodes.
Critical path length = sum of the weights of 
nodes along this path.
Average degree of concurrency = total 
amount of work / critical path length.
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Database example

Critical path (3). Critical path (4).
Critical path length = 27. Critical path length = 34.

Av. deg. of concurrency = 63/27. Av. deg. of conc. = 64/34.

2.33 1.88
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Number of tasks: 15.

• Maximum degree of concurrency: 8.
• Critical path length: 4.
• Maximum possible speedup: 15/4.
• Minimum number of processes to reach
this speedup: 8.
• Maximum speedup if we limit the processes
to 2,4, and 8: 15/8, 3, and 15/4.

Example
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Number of tasks: 15.

• Maximum degree of concurrency: 8.
• Critical path length: 4.
• Maximum possible speedup: 15/4.
• Minimum number of processes to reach
this speedup: 8.
• Maximum speedup if we limit the processes
to 2,4, and 8: 15/8, 3, and 15/4.

Example
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Number of tasks: 14.

• Maximum degree of concurrency: 8.
• Critical path length: 7.
• Maximum possible speedup: 14/7.
• Minimum number of processes to reach
this speedup: 3.
• Maximum speedup if we limit the processes
to 2,4, and 8: 14/8, 14/7, and 14/7.

Example
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Number of tasks: 15.

• Maximum degree of concurrency: 2.
• Critical path length: 8.
• Maximum possible speedup: 15/8.
• Minimum number of processes to reach
this speedup: 2.
• Maximum speedup if we limit the processes
to 2,4, and 8: 15/8.

Example
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Interaction Between Tasks
Tasks often share data.
Task interaction graph:

Nodes = tasks.
Edges = interaction.
Optional weights.

Task dependency graph is a sub-graph of the 
task interaction graph.
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Characteristics of Task Interactions

One-way interactions.
Only one task initiates and completes the 
communication without interrupting the other 
one.

Two-way interactions.
Producer – consumer model.
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Processes and Mapping
Tasks run on processors.
Process: processing agent executing the 
tasks. Not exactly like in your OS course.
Processes ~ threads here.
Mapping = assignment of tasks to processes.
API exposes processes and binding to 
processors not always controlled.

Scheduling of threads is not controlled.
What makes a good mapping?
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Mapping example
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Processes vs. processors
Processes = logical computing agent.
Processor = hardware computational unit.
In general 1-1 correspondence but this model 
gives better abstraction.
Useful for hardware supporting multiple 
programming paradigms.

How do you decompose?
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Decomposition Techniques
Recursive decomposition.

Divide-and-conquer.

Data decomposition.
Large data structure.

Exploratory decomposition.
Search algorithms.

Speculative decomposition.
Dependent choices in computations.
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Recursive decomposition
Problem solvable by divide-and-conquer:

Decompose into sub-problems.
Do it recursively.

Combine the sub-solutions.
Do it recursively.

Concurrency: The sub-problems are solved in 
parallel.
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Schwartz’s Algorithm
+ reduce by block

Reduce with maximal concurrency:
one thread per pair (n/2)
combine results in a tree structure

Schwartz:
one thread per n/p block of numbers
local sums
combine results in a tree structure
follows recipe

Recursive Decomposition
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Combining Results
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Peril-L
int nodeval’[P];
…
forall(index in (0..P-1))
{

int tally;
stride=1;
…
while(stride<P)
{

if (index%(2*stride)==0)
{

tally += nodeval’[index+stride];
stride *= 2;

}
else
{

nodeval’[index]=tally;
break;

}
}

}

full/empty
variable
intermediate
value – constant
amount of extra
space



11+14-03-2011 MVP'11 - Aalborg University 30

Reduce & Scan Abstractions
Reduce: combine values to a single one.

Almost always needed.

Scan: prefix computation.
Logic that performs sequential operations and 
carries along intermediate results.

Lesson: Try to use them as much as possible.
Abstract them as functions.

high-level, contain information
may customize implementation (e.g. BlueGene).
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Small typo p130
A={0,2,4} ⇒ A={0,2,6}
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Basic Structure
Idea:

Assume block allocation,
use Schwartz’s like algorithm,
local variable – tally – stores intermediate results.

Primitives:
init() – init tally
accum() – local accumulation
combine() – combines tally results
x-gen() – final answer
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Example: + reduce
init(): tally=0
accum(tally,val): tally+=value
combine(left,right): left+right sent to 
parent
reduce-gen(root): return
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Reduce Basic Structure
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General Scan
Difference with reduce:

need to pass intermediate results too.
Propagate tally down the tree:
value from a parent = tally from the left sub-tree 
of the parent.
root has no parent – fix that

Idea:
up-sweep with reduce
down-sweep to propagate tallys
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Prefix Sum - sum
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Prefix Sum - prefix
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Down-sweep
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Scan in Peril-L
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Lesson
Structure the algorithm with reduce & scan.
Use efficient implementations of reduce & 
scan.
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Data Decomposition
2 steps:

Partition the data.
Induce partition into tasks.

How to partition data?
Partition output data:

Independent “sub-outputs”.

Partition input data:
Local computations, followed by combination.

1-D, 2-D, 3-D block decomposition.
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Static Allocation of Work to Processes

# of threads fixed but unknown.
Allocate data to threads.
Owner compute rule.

Block allocation – maximize locality
1-D or 2-D depending on the communication 
pattern – minimize communication
surface area to volume in favour of 2-D
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Owner-Compute Rule

Process assigned to some data
is responsible for all computations associated 
with it.

Input data decomposition:
All computations done on the (partitioned) 
input data are done by the process.

Output data decomposition:
All computations for the (partitioned) output 
data are done by the process.
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1-D & 2-D Block Allocations
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Overlap Regions
Obtain data from neighbors.
Compute locally.
Avoid false sharing.
Use local matrix

no special edge cases
uniform indices
batch communication cheaper
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Overlap Regions
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Cyclic & Block Cyclic
Cyclic = round-Robin. Idea:

Partition an array into many more blocks than available 
processes.
Assign partitions (tasks) to processes in a round-robin 
manner.
→ each process gets several non adjacent blocks.

Useful when computations are not proportional to 
the data.

ex: assignment 2
otherwise poor load balance

Good: load balance.
Bad: more communication, break large blocks.
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Example: LU factorization
Non singular square matrix A (invertible).
A = L*U.
Useful for solving linear equations.

L

U
A
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LU factorization

In practice we work on A.

N steps
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Load Imbalance: LU-Decomposition

Matrix inversion – similar.
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8x8 Array on 5 Processes
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Block Cyclic Distribution
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Julia Sets
Assignment: Mandelbrot
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Irregular Allocations
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Randomized Distributions

Irregular distribution with regular mapping!
Not good.
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1-D Randomized Distribution

Permutation
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2-D Randomized Distribution

2-D block random distribution.

Block mapping.
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Irregular Allocations
Same idea as overlap regions:

get data local – inspector
local computations – executor
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Dynamic Allocations
Keys

dynamic load balancing
dynamic interactions
choose right granularity of tasks

Work queues
e.g. producer/consumer
centralized schemes with master/slave
different queue orderings
multiple queues – issues with load balancing
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Graph Partitioning
For sparse data structures and data 
dependent interaction patterns.

Numerical simulations. Discretize the problem 
and represent it as a mesh.

Sparse matrix: assign equal number of nodes 
to processes & minimize interaction.
Example: simulation of dispersion of a water 
contaminant in Lake Superior.
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Discretization
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Partitioning Lake Superior

Random partitioning. Partitioning with minimum
edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.
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Exploratory Decomposition - Trees

Exploration of
states.
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Trees
Useful data-structures.
Usually constructed with pointers.
Challenges for

communication
load balance on irregular trees

If little communication among sub-trees:
Allocate sub-trees to processes, copy the “cap”.
All processes know the structure.
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Cap Copy & Subtree Allocation
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Dynamic Allocations
Dynamic & unpredictable trees.

Search with different algorithms.
Work queues useful.
Pruning involves communication.
Termination may be an issue!
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Application to Game Search
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Performance Anomalies

Work depends on the order of the search!
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Search Orderings Issues

Breadth-first-search
(BFS)

1

2 3 4

5 6 7 8 9

10 11 12 13 14

Depth-first-search
(DFS)

1

2

3

4 5

6

7

8

9

10

11

12

13

14

Gives shortest
path but may
be more expensive
than heuristics or
random search.
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Speculative Decomposition
Dependencies between tasks are not known 
a-priori.

How to identify independent tasks?
Conservative approach: identify tasks that are 
guaranteed to be independent.
Optimistic approach: schedule tasks even if we 
are not sure – may roll-back later.


