Scalable Algorithmic Techniques Decompositions & Mapping

> Alexandre David 1.2.05 adavid@cs.aau.dk

Introduction

- Focus on data parallelism, scale with size.
 - Task parallelism limited.
- Notion of scalability is fuzzy in the book.
 - More precision later.
 - Idea: You lose efficiency with # of processors, gain efficiency with the size of the problem. Scalability measures the ratio.
 - You can experiment with assignment 2 to see that.

In Practice...

- Typical tasks:
 - Identify concurrent works.
 - Map them to processors.
 - Distribute inputs, outputs, and other data.
 - Manage shared resources.
 - Synchronize the processors.

Basic Principles

- Large blocks of independent computations.
 - Rare, seti@home.
 - Better when computations >> size of data.
 - Matrix multiplication too.
- Good performance recipe:
 - minimize interaction (= communication)
 - maximize locality (= blocks of computation)

Minimizing Interaction Overheads

Maximize data locality.

- Minimize volume of data-exchange.
- Minimize frequency of interactions.
- Minimize contention and hot spots.
 - Share a link, same memory block, etc...
 - Re-design original algorithm to change the interaction pattern.
 - Use task interaction graph to help.

Minimizing Interaction Overheads

- Overlapping computations with interactions
 - to reduce idling.
 - Initiate interactions in advance.
 - Non-blocking communications.
 - Multi-threading.
- Replicating data or computation.
- Group communication instead of point to point.
- Overlapping interactions.

Decomposing Problems

- Decomposition into *concurrent* tasks.
 - No unique solution.
 - Different sizes.
 - Decomposition illustrated as a directed graph:
 - Nodes = tasks.
 - Edges = dependency.

Example: database query processing

MODEL = ``CIVIC'' AND YEAR = 2001 AND (COLOR = ``GREEN'' OR COLOR = ``WHITE)

ID#	Model	Year	Color	Dealer	Price
4523	Civic	2002	Blue	MN	\$18,000
3476	Corolla	1999	White	IL	\$15,000
7623	Camry	2001	Green	NY	\$21,000
9834	Prius	2001	Green	CA	\$18,000
6734	Civic	2001	White	OR	\$17,000
5342	Altima	2001	Green	FL	\$19,000
3845	Maxima	2001	Blue	NY	\$22,000
8354	Accord	2000	Green	VT	\$18,000
4395	Civic	2001	Red	CA	\$17,000
7352	Civic	2002	Red	WA	\$18,000

Table 3.1A database storing information about used vehicles.

A solution Measure of concurrency? Nb. of processors? Optimal? White) Civic 2001 Green White OR Green Civic AND 2001 Civic AND 2001 AND (White OR Green)

Figure 3.2 The different tables and their dependencies in a query processing operation.

Another Solution

Granularity

Number and size of tasks.

- Fine-grained: many small tasks.
- Coarse-grained: few large tasks.
- Related: *degree of concurrency*.
 (Nb. of tasks executable in parallel).
 - Maximal degree of concurrency.
 - Average degree of concurrency.

Measures

- Average degree of concurrency if we take into account varying *amount of work?*
- Critical path = longest directed path between any start & finish nodes.
- Critical path length = sum of the weights of nodes along this path.
- Average degree of concurrency = total amount of work / critical path length.

Critical path (3). Critical path length = 27. Av. deg. of concurrency = 63/27.

Critical path (4). Critical path length = 34. Av. deg. of conc. = 64/34.

Number of tasks: 15.

- Maximum degree of concurrency: 8.
- Critical path length: 4.
- Maximum possible speedup: 15/4.
- Minimum number of processes to reach this speedup: 8.
- Maximum speedup if we limit the processes to 2,4, and 8: 15/8, 3, and 15/4.

Number of tasks: 15.

- Maximum degree of concurrency: 8.
- Critical path length: 4.
- Maximum possible speedup: 15/4.
- Minimum number of processes to reach this speedup: 8.
- Maximum speedup if we limit the processes to 2,4, and 8: 15/8, 3, and 15/4.

- Critical path length: 7.
- Maximum possible speedup: 14/7.
- Minimum number of processes to reach this speedup: 3.
- Maximum speedup if we limit the processes to 2,4, and 8: 14/8, 14/7, and 14/7.

Number of tasks: 14.

- Maximum degree of concurrency: 2.
- Critical path length: 8.
- Maximum possible speedup: 15/8.
- Minimum number of processes to reach this speedup: 2.
- Maximum speedup if we limit the processes to 2,4, and 8: 15/8.

Number of tasks: 15.

Interaction Between Tasks

- Tasks often share data.
- Task interaction graph:
 - Nodes = tasks.
 - Edges = interaction.
 - Optional weights.
- Task dependency graph is a sub-graph of the task interaction graph.

Characteristics of Task Interactions

- One-way interactions.
 - Only one task initiates and completes the communication *without* interrupting the other one.
- Two-way interactions.
 - Producer consumer model.

Processes and Mapping

- Tasks run on processors.
- Process: processing agent executing the tasks. Not exactly like in your OS course.
 Processes ~ threads here.
- Mapping = assignment of tasks to processes.
- API exposes processes and binding to processors not always controlled.
 - Scheduling of threads is not controlled.
 - What makes a good mapping?

Figure 3.7 Mappings of the task graphs of Figure 3.5 onto four processes.

Processes vs. processors

- Processes = logical computing agent.
- Processor = hardware computational unit.
- In general 1-1 correspondence but this model gives better abstraction.
- Useful for hardware supporting multiple programming paradigms.

How do you decompose?

Decomposition Techniques

- Recursive decomposition.
 - Divide-and-conquer.
- Data decomposition.
 - Large data structure.
- Exploratory decomposition.
 - Search algorithms.
- Speculative decomposition.
 - Dependent choices in computations.

Recursive decomposition

- Problem solvable by divide-and-conquer:
 - Decompose into sub-problems.
 - Do it recursively.
 - Combine the sub-solutions.

• Do it recursively.

Concurrency: The sub-problems are solved in parallel.

Schwartz's Algorithm + reduce by block

- Reduce with maximal concurrency:
 - one thread per pair (n/2)
 - combine results in a tree structure
- Schwartz:
 - one thread per n/p block of numbers
 - Iocal sums
 - combine results in a tree structure
 - follows recipe

Recursive Decomposition

Reduce & Scan Abstractions

- Reduce: combine values to a single one.
 - Almost always needed.
- Scan: prefix computation.
 - Logic that performs sequential operations and carries along intermediate results.
- Lesson: Try to use them as much as possible.
 - Abstract them as functions.
 - high-level, contain information
 - may customize implementation (e.g. BlueGene).

Small typo p130 $A=\{0,2,4\} \Rightarrow A=\{0,2,6\}$

Basic Structure

- Idea:
 - Assume block allocation,
 - use Schwartz's like algorithm,
 - Iocal variable tally stores intermediate results.
- Primitives:
 - init() init tally
 - accum() local accumulation
 - combine() combines tally results
 - x-gen() final answer

Example: + reduce

- init(): tally=0
- accum(tally,val): tally+=value
- ocmbine(left,right): left+right sent to
 parent
- reduce-gen(root): return

Reduce Basic Structure


```
Global full/empty variables
           int nodeval'[P];
        1
           int result;
        2
           forall(index in(0..P-1))
        3
        4
            {
                                                                  Local portion of global data values
        5
              int myData[size]=localize(dataarray[]);
        6
              int tally;
             int stride=1;
        7
                                                                   Initialize tally
        8
             tally=init ()
       9
             for(i=0; i<size; i++)</pre>
       10
              {
                                                                   Local accumulation
       11
                tally=accum (tally, myData[i]);
       12
              }
                                                                   Send initially to parent
      13
             nodeval'[index]=tally;
                                                                   Begin logic for tree
      14
             while(stride < P)</pre>
      15
              {
       16
                if(index%(2*stride)==0)
                                                                   Combine values globally
       17
                {
       18
                  nodeval'[index]=combine(nodeval'[index],
      19
                                              nodeval'[index+stride]);
      20
                  stride=2*stride;
       21
                }
      22
                else
       23
                {
       24
                  break;
       25
                }
       26
              }
       27
              if(index==0)
       28
              {
                                                                   Generate reduced value
                result=reduceGen (nodeval'[0]);
       29
       30
              }
11+14- 31
          }
```

```
struct tally
       1
       2
          {
                                                                    Smallest element
            float smallest1;
       3
                                                                    Second smallest
            float smallest2;
       4
       5
          };
       6
                                                                    Initialize tally
          tally init()
       7
       8
          {
2<sup>nd</sup> Min in Peril-L
      9
            tally t;
     10
           t.smallest1=MAX FLOAT;
     11
            t.smallest2=MAX FLOAT;
     12
            return t;
     13
          }
     14
                                                                    Local accumulation
     15
          tally accum(tally t, float elem)
     16
          {
                                                                    Is this a new smallest?
     17
            if(t.small1>elem)
     18
             {
     19
               t.smallest2=t.smallest1;
     20
               t.smallest1=elem;
     21
            }
     22
            else
     23
             {
                                                                    Is it a new second smallest?
     24
               if(t.smallest2>elem)
     25
               {
     26
                 t.smallest2=elem;
     27
               }
     28
               return t;
11+1429
```
```
24
             if(t.smallest2>elem)
                                                               Is it a new second smallest?
    25
             {
    26
               t.smallest2=elem;
    27
             }
    28
             return t;
    29
           }
    30
         }
    31
                                                               Combine into "left" by
    32
         tally combine(tally left, tally right)
Peril-I
                                                               accumulating right values
    33
         {
    34
           tally t;
    35
         t=accum(left, right.smallest1);
    36
           t=accum(t, right.smallest2);
Min in
    37
           return t;
    38
        }
    39
    40
         float reduceGen(tally t)
    41
         {
2nd
    42
           return t.smallest2;
    43
         }
```

General Scan

- Difference with reduce:
 - need to pass intermediate results too.
 - Propagate tally down the tree: value from a parent = tally from the left sub-tree of the parent.
 - root has no parent fix that
- Idea:
 - up-sweep with reduce
 - down-sweep to propagate tallys


```
Global full/empty memory
    int nodeval'[P];
 1
                                                              Store left operand of combine
    int ltally[P];
 2
 3
    forall(index in(0..P-1))
 4
     Ł
                                                              Local data values
       int myData[size]=localize(operandArray[]);
 5
                                                              Tally
       int tally;
 6
                                                              Tally from parent
       int ptally;
 7
 8
       int stride=1;
                                                              Initialize
 9
       tally=init ();
       for(i=0; i<size; i++)</pre>
10
11
       {
                                                              Accumulate
12
         tally=accum (tally, myData[i]);
13
       }
                                                              Send initially to parent
14
       nodeval'[index]=tally;
                                                              Begin logic for tree
       while(stride<P)</pre>
15
```

	16	{	
	17	if(index%(2*stride)==0)	
	18	{	Combine
	19	<pre>ltally[index+stride]=nodeval'[index];</pre>	
	20	<u>nodeval'</u> [index]= combine (<u>ltally</u> [index+str	ride],
	21	<u>nodeval'</u> [index+s	stride]);
	22	<pre>stride=2*stride;</pre>	
	23	}	
	24	else	
	25	{	
	26	break;	
	27	}	
	28	}	
	29	<pre>stride=P/2;</pre>	
	30	if(index==0)	
	31	{	
	32	ptally= <u>nodeval'</u> [0];	Clear existing up sweep value
	33	<pre>nodeval'[0]=init ();</pre>	Set init() as parent input
	34	}	
	35	while(stride>1)	Begin logic for tree descent
	36	{	
	37	ptally= <u>nodeval'</u> [index];	Grab parent value
	38	<pre>nodeval'[index]=ptally;</pre>	Send it down to left
	39	<pre>nodeval'[index+stride]=</pre>	Send parent + left child right
		<pre>combine (ptally, <u>ltally[index+stride]);</u></pre>	
	40	<pre>stride=stride/2;</pre>	Go down to next level
	41	}	
	42	<pre>for(i=0; i<size; i++)<="" pre=""></size;></pre>	
	43	{	
	44	<pre>myResult[i]=scanGen (ptally, myData[i]);</pre>	Generate Scan
	45	}	
11+14-03-	46	}	

Lesson

- Structure the algorithm with reduce & scan.
- Use efficient implementations of reduce & scan.

Data Decomposition

- 2 steps:
 - Partition the data.
 - Induce partition into tasks.
- How to partition data?
- Partition output data:
 - Independent "sub-outputs".
- Partition input data:
 - Local computations, followed by combination.
- 1-D, 2-D, 3-D block decomposition.

Static Allocation of Work to Processes

- # of threads fixed but unknown.
 - Allocate data to threads.
 - Owner compute rule.
- Block allocation maximize locality
 - 1-D or 2-D depending on the communication pattern – minimize communication surface area to volume in favour of 2-D

Owner-Compute Rule

- Process assigned to some data
 - is responsible for all computations associated with it.
- Input data decomposition:
 - All computations done on the (partitioned) input data are done by the process.
- Output data decomposition:
 - All computations for the (partitioned) output data are done by the process.

1-D & 2-D Block Allocations

Overlap Regions

- Obtain data from neighbors.
- Compute locally.
- Avoid false sharing.
- Use local matrix
 - no special edge cases
 - uniform indices
 - batch communication cheaper

Cyclic & Block Cyclic

- Cyclic = round-Robin. Idea:
 - Partition an array into many more blocks than available processes.
 - Assign partitions (tasks) to processes in a round-robin manner.
 - \rightarrow each process gets several non adjacent blocks.
- Useful when computations are not proportional to the data.
 - ex: assignment 2
 - otherwise poor load balance
- Good: load balance.
- Bad: more communication, break large blocks.

Example: LU factorization

- Non singular square matrix A (invertible).
- $A = L^*U$.
- Useful for solving linear equations.

In practice we work on A.

Matrix inversion - similar.

Block Cyclic Distribution

Julia Sets Assignment: Mandelbrot

Irregular Allocations

Randomized Distributions

P_0	P_1	P_2	<i>P</i> ₃	P_0	P_1	P_2	<i>P</i> ₃
P_4	P_5	P_6	P_7	P_4	P_5	P_6	P_7
P_8	P_9	P_{10}	<i>P</i> ₁₁	P_8	P_9	P_{10}	<i>P</i> ₁₁
P_{12}	<i>P</i> ₁₃	<i>P</i> ₁₄	P_{15}	P_{12}	<i>P</i> ₁₃	P_{14}	<i>P</i> ₁₅
P_0	P_1	P_2	P_3	P_0	P_1	P_2	P_3
P_4	P_5	P_6	P_7	P_4	P_5	P_6	P_7
P_8	<i>P</i> 9	P_{10}	P_{11}	P_8	<i>P</i> 9	P_{10}	P_{11}
P_{12}	<i>P</i> ₁₃	<i>P</i> ₁₄	P_{15}	P_{12}	<i>P</i> ₁₃	P_{14}	<i>P</i> ₁₅

(a)

(b)

Irregular distribution with regular mapping! Not good.

$$V = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]$$
random(V) = [8, 2, 6, 0, 3, 7, 11, 1, 9, 5, 4, 10]
$$mapping = 8 \ 2 \ 6 \ 0 \ 3 \ 7 \ 111195410$$

$$P_0 \ P_1 \ P_2 \ P_3$$

Figure 3.32 A one-dimensional randomized block mapping of 12 blocks onto four process (i.e., $\alpha = 3$).

2-D Randomized Distribution

2-D block random distribution.

Irregular Allocations

- Same idea as overlap regions:
 - get data local inspector
 - Iocal computations executor

Dynamic Allocations

- Keys
 - dynamic load balancing
 - dynamic interactions
 - choose right granularity of tasks
- Work queues
 - e.g. producer/consumer
 - centralized schemes with master/slave
 - different queue orderings
 - multiple queues issues with load balancing

Graph Partitioning

- For sparse data structures and data dependent interaction patterns.
 - Numerical simulations. Discretize the problem and represent it as a mesh.
- Sparse matrix: assign equal number of nodes to processes & minimize interaction.
- Example: simulation of dispersion of a water contaminant in Lake Superior.

Figure 3.34 A mesh used to model Lake Superior.

Random partitioning. Partitioning with minimum edge cut.

Finding an exact optimal partitioning is an NP-complete problem.

Exploration of states.

- Useful data-structures.
- Usually constructed with pointers.
- Challenges for
 - communication
 - Ioad balance on irregular trees
- If little communication among sub-trees:
 - Allocate sub-trees to processes, copy the "cap".
 - All processes know the structure.

Dynamic Allocations

- Dynamic & unpredictable trees.
 - Search with different algorithms.
 - Work queues useful.
 - Pruning involves communication.
 - Termination may be an issue!

Figure 3.19 An illustration of anomalous speedups resulting from exploratory decomposition.

11+14-03-2011
Search Orderings Issues

Speculative Decomposition

- Dependencies between tasks are not known a-priori.
 - How to identify independent tasks?
 - Conservative approach: identify tasks that are guaranteed to be independent.
 - Optimistic approach: schedule tasks even if we are not sure – may roll-back later.