
Scalable Algorithmic
Techniques

Decompositions & Mapping

Alexandre David
1.2.05

adavid@cs.aau.dk

11+14-03-2011 MVP'11 - Aalborg University 2

Introduction
Focus on data parallelism, scale with size.

Task parallelism limited.

Notion of scalability is fuzzy in the book.
More precision later.
Idea: You lose efficiency with # of processors,
gain efficiency with the size of the problem.
Scalability measures the ratio.

You can experiment with assignment 2 to see that.

11+14-03-2011 MVP'11 - Aalborg University 3

In Practice…
Typical tasks:

Identify concurrent works.
Map them to processors.
Distribute inputs, outputs, and other data.
Manage shared resources.
Synchronize the processors.

11+14-03-2011 MVP'11 - Aalborg University 4

Basic Principles
Large blocks of independent computations.

Rare, seti@home.
Better when computations >> size of data.

Matrix multiplication too.

Good performance recipe:
minimize interaction (= communication)
maximize locality (= blocks of computation)

11+14-03-2011 MVP'11 - Aalborg University 5

Minimizing Interaction Overheads

Maximize data locality.
Minimize volume of data-exchange.
Minimize frequency of interactions.

Minimize contention and hot spots.
Share a link, same memory block, etc…
Re-design original algorithm to change the
interaction pattern.
Use task interaction graph to help.

11+14-03-2011 MVP'11 - Aalborg University 6

Minimizing Interaction Overheads

Overlapping computations with interactions
– to reduce idling.

Initiate interactions in advance.
Non-blocking communications.
Multi-threading.

Replicating data or computation.
Group communication instead of point to
point.
Overlapping interactions.

11+14-03-2011 MVP'11 - Aalborg University 7

Decomposing Problems
Decomposition into concurrent tasks.

No unique solution.
Different sizes.
Decomposition illustrated as a directed graph:

Nodes = tasks.
Edges = dependency.

Task dependency graph!

11+14-03-2011 MVP'11 - Aalborg University 8

Example: Matrix * Vector

N tasks, 1 task/row:

Matrix

Ve
ct

or

Task dependency graph?

11+14-03-2011 MVP'11 - Aalborg University 9

Example: database query processing

MODEL = ``CIVIC'' AND YEAR = 2001 AND
(COLOR = ``GREEN'' OR COLOR = ``WHITE)

11+14-03-2011 MVP'11 - Aalborg University 10

Measure of concurrency?
Nb. of processors?Optimal?

A solution

11+14-03-2011 MVP'11 - Aalborg University 11

Another Solution

Better/worse?

11+14-03-2011 MVP'11 - Aalborg University 12

Granularity
Number and size of tasks.

Fine-grained: many small tasks.
Coarse-grained: few large tasks.

Related: degree of concurrency.
(Nb. of tasks executable in parallel).

Maximal degree of concurrency.
Average degree of concurrency.

11+14-03-2011 MVP'11 - Aalborg University 13

Coarser Matrix * Vector

N tasks, 3 task/row:

Matrix

Ve
ct

or

11+14-03-2011 MVP'11 - Aalborg University 14

Measures
Average degree of concurrency if we take
into account varying amount of work?
Critical path = longest directed path between
any start & finish nodes.
Critical path length = sum of the weights of
nodes along this path.
Average degree of concurrency = total
amount of work / critical path length.

11+14-03-2011 MVP'11 - Aalborg University 15

Database example

Critical path (3). Critical path (4).
Critical path length = 27. Critical path length = 34.

Av. deg. of concurrency = 63/27. Av. deg. of conc. = 64/34.

2.33 1.88

11+14-03-2011 MVP'11 - Aalborg University 16

Number of tasks: 15.

• Maximum degree of concurrency: 8.
• Critical path length: 4.
• Maximum possible speedup: 15/4.
• Minimum number of processes to reach
this speedup: 8.
• Maximum speedup if we limit the processes
to 2,4, and 8: 15/8, 3, and 15/4.

Example

11+14-03-2011 MVP'11 - Aalborg University 17

Number of tasks: 15.

• Maximum degree of concurrency: 8.
• Critical path length: 4.
• Maximum possible speedup: 15/4.
• Minimum number of processes to reach
this speedup: 8.
• Maximum speedup if we limit the processes
to 2,4, and 8: 15/8, 3, and 15/4.

Example

11+14-03-2011 MVP'11 - Aalborg University 18

Number of tasks: 14.

• Maximum degree of concurrency: 8.
• Critical path length: 7.
• Maximum possible speedup: 14/7.
• Minimum number of processes to reach
this speedup: 3.
• Maximum speedup if we limit the processes
to 2,4, and 8: 14/8, 14/7, and 14/7.

Example

11+14-03-2011 MVP'11 - Aalborg University 19

Number of tasks: 15.

• Maximum degree of concurrency: 2.
• Critical path length: 8.
• Maximum possible speedup: 15/8.
• Minimum number of processes to reach
this speedup: 2.
• Maximum speedup if we limit the processes
to 2,4, and 8: 15/8.

Example

11+14-03-2011 MVP'11 - Aalborg University 20

Interaction Between Tasks
Tasks often share data.
Task interaction graph:

Nodes = tasks.
Edges = interaction.
Optional weights.

Task dependency graph is a sub-graph of the
task interaction graph.

11+14-03-2011 MVP'11 - Aalborg University 21

Characteristics of Task Interactions

One-way interactions.
Only one task initiates and completes the
communication without interrupting the other
one.

Two-way interactions.
Producer – consumer model.

11+14-03-2011 MVP'11 - Aalborg University 22

Processes and Mapping
Tasks run on processors.
Process: processing agent executing the
tasks. Not exactly like in your OS course.
Processes ~ threads here.
Mapping = assignment of tasks to processes.
API exposes processes and binding to
processors not always controlled.

Scheduling of threads is not controlled.
What makes a good mapping?

11+14-03-2011 MVP'11 - Aalborg University 23

Mapping example

11+14-03-2011 MVP'11 - Aalborg University 24

Processes vs. processors
Processes = logical computing agent.
Processor = hardware computational unit.
In general 1-1 correspondence but this model
gives better abstraction.
Useful for hardware supporting multiple
programming paradigms.

How do you decompose?

11+14-03-2011 MVP'11 - Aalborg University 25

Decomposition Techniques
Recursive decomposition.

Divide-and-conquer.

Data decomposition.
Large data structure.

Exploratory decomposition.
Search algorithms.

Speculative decomposition.
Dependent choices in computations.

11+14-03-2011 MVP'11 - Aalborg University 26

Recursive decomposition
Problem solvable by divide-and-conquer:

Decompose into sub-problems.
Do it recursively.

Combine the sub-solutions.
Do it recursively.

Concurrency: The sub-problems are solved in
parallel.

11+14-03-2011 MVP'11 - Aalborg University 27

Schwartz’s Algorithm
+ reduce by block

Reduce with maximal concurrency:
one thread per pair (n/2)
combine results in a tree structure

Schwartz:
one thread per n/p block of numbers
local sums
combine results in a tree structure
follows recipe

Recursive Decomposition

11+14-03-2011 MVP'11 - Aalborg University 28

Combining Results

11+14-03-2011 MVP'11 - Aalborg University 29

Peril-L
int nodeval’[P];
…
forall(index in (0..P-1))
{

int tally;
stride=1;
…
while(stride<P)
{

if (index%(2*stride)==0)
{

tally += nodeval’[index+stride];
stride *= 2;

}
else
{

nodeval’[index]=tally;
break;

}
}

}

full/empty
variable
intermediate
value – constant
amount of extra
space

11+14-03-2011 MVP'11 - Aalborg University 30

Reduce & Scan Abstractions
Reduce: combine values to a single one.

Almost always needed.

Scan: prefix computation.
Logic that performs sequential operations and
carries along intermediate results.

Lesson: Try to use them as much as possible.
Abstract them as functions.

high-level, contain information
may customize implementation (e.g. BlueGene).

11+14-03-2011 MVP'11 - Aalborg University 31

Small typo p130
A={0,2,4} ⇒ A={0,2,6}

11+14-03-2011 MVP'11 - Aalborg University 32

Basic Structure
Idea:

Assume block allocation,
use Schwartz’s like algorithm,
local variable – tally – stores intermediate results.

Primitives:
init() – init tally
accum() – local accumulation
combine() – combines tally results
x-gen() – final answer

11+14-03-2011 MVP'11 - Aalborg University 33

Example: + reduce
init(): tally=0
accum(tally,val): tally+=value
combine(left,right): left+right sent to
parent
reduce-gen(root): return

11+14-03-2011 MVP'11 - Aalborg University 34

Reduce Basic Structure

11+14-03-2011 MVP'11 - Aalborg University 35

G
en

er
al

 R
ed

uc
e

in
 P

er
il-

L

11+14-03-2011 MVP'11 - Aalborg University 36

2n
d

M
in

 in
 P

er
il-

L

11+14-03-2011 MVP'11 - Aalborg University 37

2n
d

M
in

 in
 P

er
il-

L

11+14-03-2011 MVP'11 - Aalborg University 38

General Scan
Difference with reduce:

need to pass intermediate results too.
Propagate tally down the tree:
value from a parent = tally from the left sub-tree
of the parent.
root has no parent – fix that

Idea:
up-sweep with reduce
down-sweep to propagate tallys

11+14-03-2011 MVP'11 - Aalborg University 39

Prefix Sum - sum

11+14-03-2011 MVP'11 - Aalborg University 40

Prefix Sum - prefix

11+14-03-2011 MVP'11 - Aalborg University 41

Down-sweep

11+14-03-2011 MVP'11 - Aalborg University 42

Scan in Peril-L

11+14-03-2011 MVP'11 - Aalborg University 43

11+14-03-2011 MVP'11 - Aalborg University 44

Lesson
Structure the algorithm with reduce & scan.
Use efficient implementations of reduce &
scan.

11+14-03-2011 MVP'11 - Aalborg University 45

Data Decomposition
2 steps:

Partition the data.
Induce partition into tasks.

How to partition data?
Partition output data:

Independent “sub-outputs”.

Partition input data:
Local computations, followed by combination.

1-D, 2-D, 3-D block decomposition.

11+14-03-2011 MVP'11 - Aalborg University 46

Static Allocation of Work to Processes

of threads fixed but unknown.
Allocate data to threads.
Owner compute rule.

Block allocation – maximize locality
1-D or 2-D depending on the communication
pattern – minimize communication
surface area to volume in favour of 2-D

11+14-03-2011 MVP'11 - Aalborg University 47

Owner-Compute Rule

Process assigned to some data
is responsible for all computations associated
with it.

Input data decomposition:
All computations done on the (partitioned)
input data are done by the process.

Output data decomposition:
All computations for the (partitioned) output
data are done by the process.

11+14-03-2011 MVP'11 - Aalborg University 48

1-D & 2-D Block Allocations

11+14-03-2011 MVP'11 - Aalborg University 49

Overlap Regions
Obtain data from neighbors.
Compute locally.
Avoid false sharing.
Use local matrix

no special edge cases
uniform indices
batch communication cheaper

11+14-03-2011 MVP'11 - Aalborg University 50

Overlap Regions

11+14-03-2011 MVP'11 - Aalborg University 51

Cyclic & Block Cyclic
Cyclic = round-Robin. Idea:

Partition an array into many more blocks than available
processes.
Assign partitions (tasks) to processes in a round-robin
manner.
→ each process gets several non adjacent blocks.

Useful when computations are not proportional to
the data.

ex: assignment 2
otherwise poor load balance

Good: load balance.
Bad: more communication, break large blocks.

11+14-03-2011 MVP'11 - Aalborg University 52

Example: LU factorization
Non singular square matrix A (invertible).
A = L*U.
Useful for solving linear equations.

L

U
A

11+14-03-2011 MVP'11 - Aalborg University 53

LU factorization

In practice we work on A.

N steps

11+14-03-2011 MVP'11 - Aalborg University 54

Load Imbalance: LU-Decomposition

Matrix inversion – similar.

11+14-03-2011 MVP'11 - Aalborg University 55

8x8 Array on 5 Processes

11+14-03-2011 MVP'11 - Aalborg University 56

Block Cyclic Distribution

11+14-03-2011 MVP'11 - Aalborg University 57

Julia Sets
Assignment: Mandelbrot

11+14-03-2011 MVP'11 - Aalborg University 58

Irregular Allocations

11+14-03-2011 MVP'11 - Aalborg University 59

Randomized Distributions

Irregular distribution with regular mapping!
Not good.

11+14-03-2011 MVP'11 - Aalborg University 60

1-D Randomized Distribution

Permutation

11+14-03-2011 MVP'11 - Aalborg University 61

2-D Randomized Distribution

2-D block random distribution.

Block mapping.

11+14-03-2011 MVP'11 - Aalborg University 62

Irregular Allocations
Same idea as overlap regions:

get data local – inspector
local computations – executor

11+14-03-2011 MVP'11 - Aalborg University 63

Dynamic Allocations
Keys

dynamic load balancing
dynamic interactions
choose right granularity of tasks

Work queues
e.g. producer/consumer
centralized schemes with master/slave
different queue orderings
multiple queues – issues with load balancing

11+14-03-2011 MVP'11 - Aalborg University 64

Graph Partitioning
For sparse data structures and data
dependent interaction patterns.

Numerical simulations. Discretize the problem
and represent it as a mesh.

Sparse matrix: assign equal number of nodes
to processes & minimize interaction.
Example: simulation of dispersion of a water
contaminant in Lake Superior.

11+14-03-2011 MVP'11 - Aalborg University 65

Discretization

11+14-03-2011 MVP'11 - Aalborg University 66

Partitioning Lake Superior

Random partitioning. Partitioning with minimum
edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.

11+14-03-2011 MVP'11 - Aalborg University 67

Exploratory Decomposition - Trees

Exploration of
states.

11+14-03-2011 MVP'11 - Aalborg University 68

Trees
Useful data-structures.
Usually constructed with pointers.
Challenges for

communication
load balance on irregular trees

If little communication among sub-trees:
Allocate sub-trees to processes, copy the “cap”.
All processes know the structure.

11+14-03-2011 MVP'11 - Aalborg University 69

Cap Copy & Subtree Allocation

11+14-03-2011 MVP'11 - Aalborg University 70

Dynamic Allocations
Dynamic & unpredictable trees.

Search with different algorithms.
Work queues useful.
Pruning involves communication.
Termination may be an issue!

11+14-03-2011 MVP'11 - Aalborg University 71

Application to Game Search

11+14-03-2011 MVP'11 - Aalborg University 72

Performance Anomalies

Work depends on the order of the search!

11+14-03-2011 MVP'11 - Aalborg University 73

Search Orderings Issues

Breadth-first-search
(BFS)

1

2 3 4

5 6 7 8 9

10 11 12 13 14

Depth-first-search
(DFS)

1

2

3

4 5

6

7

8

9

10

11

12

13

14

Gives shortest
path but may
be more expensive
than heuristics or
random search.

11+14-03-2011 MVP'11 - Aalborg University 74

Speculative Decomposition
Dependencies between tasks are not known
a-priori.

How to identify independent tasks?
Conservative approach: identify tasks that are
guaranteed to be independent.
Optimistic approach: schedule tasks even if we
are not sure – may roll-back later.

