
The PRAM Model & Optimality

Alexandre David
1.2.05

adavid@cs.aau.dk

19-02-2010 MVP'10 - Aalborg University 2

Outline
Introduction to Parallel Algorithms
(Sven Skyum)

PRAM model
Optimality
Examples

19-02-2010 MVP'10 - Aalborg University 3

PRAM Model

A PRAM consists of
a global access memory (i.e. shared)
a set of processors running the same
program (though not always), with a private
stack.

A PRAM is synchronous.
One global clock.

Unlimited resources.

19-02-2010 MVP'10 - Aalborg University 4

Classes of PRAM

How to resolve contention?
EREW PRAM – exclusive read, exclusive write
CREW PRAM – concurrent read, exclusive
write
ERCW PRAM – exclusive read, concurrent
write
CRCW PRAM – concurrent read, concurrent
write

Most realistic?
Most convenient?

19-02-2010 MVP'10 - Aalborg University 5

Example: Sequential Max

Function smax(A,n)
m := -∞
for i := 1 to n do

m := max{m,A[i]}
od
smax := m

end

Time O(n)

Sequential dependency,
difficult to parallelize.

19-02-2010 MVP'10 - Aalborg University 6

Example: Sequential Max (bis)

Function smax2(A,n)
for i := 1 to n/2 do

B[i] := max{A[2i-1],A[2i]}
od
if n = 2 then

smax2 := B[1]
else

smax2 := smax2(B,n/2)
fi

end

Time O(n)

Dependency only between every call.

19-02-2010 MVP'10 - Aalborg University 7

Example: Parallel Max

Function smax2(A,n) [p1,p2,…,pn/2]
for i := 1 to n/2 pardo

pi: B[i] := max{A[2i-1],A[2i]}
od
if n = 2 then

p1: smax2 := B[1]
else

smax2 := smax2(B,n/2) [p1,p2,…,pn/4]
fi

end

Time O(logn)

19-02-2010 MVP'10 - Aalborg University 8

Analysis of the Parallel Max
Time: O(logn) for n/2 processors.
Work done?

p(n)=n/2 number of processors.
t(n) time to run the algorithm.
w(n)=p(n)*t(n) work done.
Here w(n)=O(n logn).
Is it optimal??

19-02-2010 MVP'10 - Aalborg University 9

Optimality

If w(n) is of the same order as
the time for the best known
sequential algorithm, then the
parallel algorithm is said to be
optimal.

Definition

19-02-2010 MVP'10 - Aalborg University 10

Analysis of the Parallel Max
Time: O(logn) for n/2 processors.
Work done?

p(n)=n/2 number of processors.
t(n) time to run the algorithm.
w(n)=p(n)*t(n) work done.
Here w(n)=O(n logn).
Is it optimal? NO, O(n) to be optimal.
Why?

?

19-02-2010 MVP'10 - Aalborg University 11

But…

Can a parallel algorithm solve
a problem with less work than
the best known sequential
solution?

19-02-2010 MVP'10 - Aalborg University 12

Design Principle

Construct optimal algorithms
to run as fast as possible.

=
Construct optimal algorithms
using as many processors as
possible!

Because optimal with p → optimal with fewer than p.
Opposite false.
Simulation does not add work.

19-02-2010 MVP'10 - Aalborg University 13

Brent’s Scheduling Principle

If a parallel computation consists of
k phases
taking time t1,t2,…,tk
using a1,a2,…,ak processors
in phases 1,2,…,k

then the computation can be done in time
O(a/p+t) using p processors where
t =sum(ti), a =sum(aiti).

Theorem

19-02-2010 MVP'10 - Aalborg University 14

Brent’s Scheduling Principle
i’th phase:

p processors simulate ai processors.
Each of them simulate at most ceil(ai/p)≤ai/p+1,
which consumes time ti at a constant factor for
each of them.
Total ≤ sum(ti*(ai/p+1)) = a/p+t

19-02-2010 MVP'10 - Aalborg University 15

Previous Example
k phases = logn.
ti = constant time.
ai = n/2,n/4,…,1 processors.
With p processors we can use time
O(n/p + logn).
Choose p=O(n/ logn) → time O(logn) and
this is optimal!

There is a “but”: You need to know n in
advance to schedule the computation.

19-02-2010 MVP'10 - Aalborg University 16

Prefix Computations

Input: array A[1..n] of numbers.
Output: array B[1..n] such that B[k] = sum(i:1..k) A[i]
Sequential algorithm:
function prefix+(A,n)

B[1] := A[1]
for i = 2 to n do

B[i] := B[i-1]+A[i]
od

end

Time O(n)

19-02-2010 MVP'10 - Aalborg University 17

Parallel Prefix Computation
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end

19-02-2010 MVP'10 - Aalborg University 18

Parallel Prefix Computation
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end

19-02-2010 MVP'10 - Aalborg University 19

Prefix Computations
The point of this algorithm:

It works because + is associative (i.e. the
compression works).
It will work for any other associative operations.
Brent’s scheduling principle:

For any associative operator computable in O(1),
its prefix is computable in O(logn) using O(n/ logn)
processors, which is optimal!

19-02-2010 MVP'10 - Aalborg University 20

Merging (of Sorted Arrays)

Rank function:
rank(x,A,n) = 0 if x < A[1]
rank(x,A,n) = max{i | A[i] ≤ x}
Computable in time O(logn) by binary search.

Merge A[1..n] and B[1..m] into C[1..n+m].
Sequential algorithm in time O(n+m).

19-02-2010 MVP'10 - Aalborg University 21

Parallel Merge

function merge1(A,B,n,m)[p1,…,pn+m]
for i = 1 to n pardo pi:

IA[i] := rank(A[i]-1,B,m)
C[i+IA[i]] := A[i]

od
for i = 1 to m pardo pi:

IB[i] := rank(B[i],A,n)
C[i+IB[i]] := B[i]

od
merge1 := C

end
CREW
Not optimal.

?

19-02-2010 MVP'10 - Aalborg University 22

Optimal Merge - Idea

A B
n m

n/log(n) sub-arrays of
log(n) elements

m/log(m) sub-arrays of
log(m) elements

C

previous merge: n/log(n) + m/log(m) elements
position of the ends in C
costs O(log(n+m)),
(optimal) on (m+n)/log(n+m) processors!

Merge n/log(n)+m/log(m) lists with sequential merge in parallel.
Max length of sub-list is O(log(n+m)).

19-02-2010 MVP'10 - Aalborg University 23

Example: Max in O(1)
Max of an array in constant time!

A

][0][
1][][][

0][1

iAiB
jBjAiA

iB ni

⇒=
=⇒>

=≤≤
1. Use n processors to

initialize B.
2. Use n2 processors to

compare all A[i] & A[j].
3. Use n processors to

find the max.

n elements

19-02-2010 MVP'10 - Aalborg University 24

Lessons
PRAM not realistic

no communication

Reasoning on algorithms still interesting
notion of optimality applies
scheduling principle applies

