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i PRAM Model

= A PRAM consists of

= a global access memory (i.e. shared)

= a set of processors running the same
program (though not always), with a private
stack.

= A PRAM is synchronous.
= One global clock.

= Unlimited resources.



i Classes of PRAM

= How to resolve contention?
= EREW PRAM — exclusive read, exclusive write
= CREW PRAM - concurrent read, exclusive

write

= ERCW PRAM - exclusive read, concurrent
write

= CRCW PRAM - concurrent read, concurrent
write

Most realistic?
Most convenient?




i Example: Sequential Max

Function smax(A,n)

end

m .= -oo

Time O(n)

fori:=1tondo
m := max{m,A[i]}

od
smax .= m

Sequential dependency,
difficult to parallelize.




i Example: Sequential Max (bis)

Function smax2(A,n) Time O(n)
for i :=1ton/2 do
B[i] := max{A[2i-1],A[2i]}

od
if n= 2 then
smax?2 := B[1]
else
smax?2 := smax2(B,n/2)
fi

end Dependency only between every call.




i Example: Parallel Max

Function smax2(A,n) [pi.ps....0./2] | Time Ofogn)

for i :=1to n/2 pardo
p;: B[i] := max{A[2i-1],A[2i]}

od

if n= 2 then
p.: smax2 := B[1]

else
smax?2 := smax2(B,n/2) [p1,ps.....0 4]

fi

end



i Analysis of the Parallel Max

= Time: O(logn)for n/2 processors.

n Work done?

= p(Nn)=n/2 number of processors.
= {(n)time to run the algorithm.
« W(n)=p(n)*t(n) work done.
Here w(n)=0(nlogn).
@ Is it optimal?




i Optimality

Definition

If w(n)is of the same order as
the time for the best known
sequential algorithm, then the
parallel algorithm is said to be
optimal.




i Analysis of the Parallel Max

= Time: O(logn)for n/2 processors.

n Work done?

= p(Nn)=n/2 number of processors.

= {(n)time to run the algorithm.

« W(n)=p(n)*t(n)work done.
Here w(n)=0(nlogn).
Is it optimal? NO, O(n) to be optimal.
Why?

@
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Can a parallel algorithm solve
a problem with less work than
the best known sequential
solution?
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i Design Principle

Construct optimal algorithms
to run as fast as possible.

Construct optimal algorithms
using as many processors as
possible!

Because optimal with p — optimal with fewer than p.
Opposite false.
Simulation does not add work.
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i Brent’'s Scheduling Principle

Theorem

If a parallel computation consists of
k phases

taking time #,7,,..,7,
using a,a,,...,a, processors
in phases 1,2,..,.k
then the computation can be done in time

O(a/p+1)using p processors where
1 =sum(?), a=sum(at).
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i Brent’'s Scheduling Principle

= i'th phase:
= p processors simulate g; processors.

= Each of them simulate at most ceil(a/p)<a/p+1,
which consumes time ¢; at a constant factor for
each of them.

= Total < sum(t*(a/p+1)) = a/p+t
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i Previous Example

= kphases = logn.

= [, = constant time.

m d,= N/2,n/4...,1 processors.

= With p processors we can use time
O(ry/p + logn).

= Choose p=0(n/logn)— time O(logn)and
this is optimal!

There is a "but”: You need to know n in
advance to schedule the computation.
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i Prefix Computations

Input: array A[l..n] of numbers.
Output: array B[1..n] such that B[k] = sum(i:1..k) A[i]
Sequential algorithm:
function prefix*(A n :
Bm'?: A[l]( ) Time O(n)
fori=21tondo
B[i] := B[i-1]+A[i]
od

end
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Prefix Computation

function prefix*(A,n)
B[1]:= A[1]
if n>1 then
for i = 1 to n/2 pardo
Clil:=A[2i-1]+A[2i]
od
D:=prefix*(C,n/2)
for i = 1 to n/2 pardo
B[2i]:=DJi]
od
for i = 2 to n/2 pardo
B[2i-1]:=D[i-1]+A[2i-1]
od
fi
prefix* =B
end
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Parallel Prefix Computation

function prefix*(A,n)[py,....p,]
p.: B[1]:= A[1]
if n>1 then
for i = 1 to n/2 pardo
pi: Clil=A[2i-1]+A[2i]
od
D:=prefix*(C,n/2)[py,....pn/>]
for i = 1 to n/2 pardo
p: B[2i]:=D[i]
od
for i = 2 to n/2 pardo
pi: B[2i-1]:=D[i-1]+A[2i-1]
od
fi
prefix*:=B
end
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i Prefix Computations

= The point of this algorithm:

» It works because + is associative (i.e. the
compression works).

= It will work for any other associative operations.
= Brent’s scheduling principle:

For any associative operator computable in O(7),
its prefix is computable in O(logn)using O(n/ logn)
processors, which is optimall
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i Merging (of Sorted Arrays)

= Rank function:

= rank(x,A,n) = 0 if x < A[1]

« rank(x,A,n) = max{i | Al[i] £ x}

=« Computable in time O('logn) by binary search.
= Merge A[1..n] and B[1..m] into C[1..n+m].

= Sequential algorithm in time O(n+m).
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i Parallel Merge

fUﬂC"’iOﬂ mer'gel(A,B,n,m)[Pp---,Pn+m]

end

for i =1to n pardo p;
TA[i]:= rank(A[i]-1,B,m)
Cli+IA[i]] = Ali]

od

for i =1to m pardo p;
IB[i]:= rank(B[i],A,n)
C[i+IB[i]] := B[i]

od

mergel := C CREW
@ Not optimal.
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i Optimal Merge - Idea

e Y

n/log(n) sub-arrays of m/log(m) sub-arrays of
log(n) elements log(m) elements

previous merge: n/log(n) + m/log(m) elements
position of the ends in C

costs O(log(n+m)),

(optimal) on (m+n)/log(n+m) processors!

CLHEN NNN NN N B

Merge n/log(n)+m/log(m) lists with sequential merge in parallel.
Max length of sub-list is O(log(n+m)).
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i Example: Max in O(1)

= Max of an array in constant time!

A n elements

1. Use n processors to Blil. . =0
initialize B. e

2.Use r¥ t : - 1 _
compare ai At & Ay, o> ALLI= BLI1=1

3. Use n processors to B[i]=0= Ali]
find the max.
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i Lessons

= PRAM not realistic
= N0 communication

= Reasoning on algorithms still interesting
= Notion of optimality applies
= scheduling principle applies
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