
Multithread Programming

Alexandre David
1.2.05

adavid@cs.aau.dk

28-02+07-03-2011 MVP'11 - Aalborg University 2

Comparison
Directive based: OpenMP.
Explicit parallel programming:

pthreads – shared memory – focus on
synchronization,
MPI – message passing – focus on
communication.
Both: Specify tasks & interactions.

28-02+07-03-2011 MVP'11 - Aalborg University 3

Programming Models
Concurrency supported by:

Processes – private data unless otherwise
specified.
Threads – shared memory, lightweight.
Directive based programming – concurrency
specified as high level compiler directive,
OpenMP.

See OS course.

28-02+07-03-2011 MVP'11 - Aalborg University 4

Threads Basics
All memory is globally accessible.
But the stack is considered local.

In practice both local (private) and global
(shared) memory.
Recall that memory is physically distributed and
local accesses are faster.
Applicable to SMP/multi-core machines.

28-02+07-03-2011 MVP'11 - Aalborg University 5

Why Threads?
Software portability – applications
developed and run without modification on
multi-processor machines.
Latency hiding – recall chapter 2.
Implicit scheduling and load balancing –
specify many tasks and let the system map
and schedule them.
Ease of programming, widespread.
Performance & correctness issues.

?

28-02+07-03-2011 MVP'11 - Aalborg University 6

The POSIX Thread API
It is a standard API (like MPI).

Supported by most vendors.

General concepts applicable to other thread
APIs (java threads, NT threads, etc).
Low level functions, API is missing high level
constructs, e.g., no collective communication
like in MPI.

28-02+07-03-2011 MVP'11 - Aalborg University 7

Thread Life Cycle
How to create a thread:

creation function
the thread runs the specified function

How to destroy a thread:
the thread returns from the function or
it calls pthread_exit or
it is cancelled by another thread

How to clean-up/read status
join

28-02+07-03-2011 MVP'11 - Aalborg University 8

Thread Creation

#include <pthread.h>

int pthread_create(
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void* (*thread_function)(void *),
void *arg);

Header.

Identifier.

NULL for
default.

Function to call with its argument.

28-02+07-03-2011 MVP'11 - Aalborg University 9

Waiting for Termination

int pthread_join(
pthread_t thread,
void ** ptr);

Thread to wait for.

Threads call pthread_exit(void*).
The caller can read a (void*) at address ptr.

The creator process/thread calls this function
to wait for its spawned threads.

28-02+07-03-2011 MVP'11 - Aalborg University 10

Misc

void pthread_exit(void*);

pthread_t pthread_self();

int pthread_equal(pthread_t t1, pthread_t t2);

28-02+07-03-2011 MVP'11 - Aalborg University 11

Thread Cancellation
Stop a thread in the middle of its work.
Function may return before the thread is
really stopped!

int pthread_cancel(pthread_t thread);

28-02+07-03-2011 MVP'11 - Aalborg University 12

Attributes

Threads can be detached/joinable or bound/unbound.

28-02+07-03-2011 MVP'11 - Aalborg University 13

Example
#include <pthread.h>
int err;

void main()
{
pthread_t tid[MAX];
for(i = 0; i < t; i++)
{
err=pthread_create(&tid[i], NULL, job, i);

}
for(i = 0; i < t; i++)
{
err=pthread_join_(tid[i], (void**)&status[i])

}
}

… assume some code here
bad practice

don’t declare MAX as constant
t undeclared, should be MAX here

careful with the argument – race condition

typos

should be int main(int argc, char* argv[])

28-02+07-03-2011 MVP'11 - Aalborg University 14

Example - Thread

void job()
{

int errorcode;
…
if (blabla)
{
errorcode = boom;

}
pthread_exit(&errorcode);

}

wrong signature

problem with address

28-02+07-03-2011 MVP'11 - Aalborg University 15

Good Way
typedef struct
{

int id; // input data
…
int result; // output data
int errorcode;
…

} thread_data_t;

void* job(thread_data_t *data) or
{ void* job(void* arg)

… {
thread_data_t *data = (thread_data_t*) arg;
…

} }

28-02+07-03-2011 MVP'11 - Aalborg University 16

Mutex-Locks
Implement critical section.
Mutex-locks can be locked or unlocked.

Locking is atomic.
Threads must acquire a lock to enter a critical
section.
Threads must release their locks when leaving
a critical section.

Locks represent serialization points. Too
many locks will decrease performance.

28-02+07-03-2011 MVP'11 - Aalborg University 17

Mutex-Lock
int pthread_mutex_init(

pthread_mutex_t *mutex_lock,
const pthread_mutextattr_t *lock_attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex_lock);

int pthread_mutex_unlock(
pthread_mutex_t *mutex_lock);

28-02+07-03-2011 MVP'11 - Aalborg University 18

Attribute Objects
To control threads and synchronization.

Change scheduling policy…
Specify mutex types.

Types of mutexes:
Normal – 1 lock per thread or deadlock.
Recursive – several locks per thread OK.
Error check – 1 lock per thread or error.

28-02+07-03-2011 MVP'11 - Aalborg University 19

Overhead of Locking
Locks represent serialization points.

Keep critical sections small.
Previous example: create & process tasks outside
the section.

Faster variant:

int pthread_mutex_trylock(
pthread_mutex_t *mutex_lock);

Does not block, returns EBUSY if failed.

28-02+07-03-2011 MVP'11 - Aalborg University 20

Try-lock
To reduce idling overheads.
Good if critical section can be delayed.
Cheaper call.

Although it is polling.

28-02+07-03-2011 MVP'11 - Aalborg University 21

Issues
Deadlocks

A locks M1 and M2, B locks M2 and M1…
4 necessary conditions

mutual exclusion – resource assigned to ≤1 thread
hold and wait – hold resource and wait for another
no preemption – only the owner can release its resource
circular wait – circular dependency

Rule of thumb: Have a global order for locking, unlock in
reverse order – lock hierarchy.

Lock non initialized mutex: not good.
Unlock twice: not good.
Monitors: better to encapsulate.

28-02+07-03-2011 MVP'11 - Aalborg University 22

Resource Allocation Graph

28-02+07-03-2011 MVP'11 - Aalborg University 23

Condition Variables for Synchronization

How to implement condition variables with
monitors.
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
A condition variable is always associated
with a mutex.
Lock/unlock to test & wait, re-lock/unlock
to re-test.
Similar concept of monitors in Java,
though implemented differently.

One condition variable ⇔ one predicate.

28-02+07-03-2011 MVP'11 - Aalborg University 24

Condition Variables & Monitors

Monitor

Condition variable

enter & test

success

failure

signaled – re-enter & test

pthread_cond_wait

pthread_cond_signal

pthread_mutex_lock

pthread_mutex_unlock

28-02+07-03-2011 MVP'11 - Aalborg University 25

Monitors with Pthread

pthread_mutex_lock(&lock);
while(!predicate) {

pthread_cond_wait(&condition, &lock);
}
<critical section>
pthread_cond_signal(&condition);
pthread_mutex_unlock(&lock);

28-02+07-03-2011 MVP'11 - Aalborg University 26

Monitors in Java

synchronized void foo() {
while(!predicate) wait();
<critical section>
notify();

}

28-02+07-03-2011 MVP'11 - Aalborg University 27

Monitors in C#

using System.Threading;
…
void foo() {

Monitor.enter(obj);
while(!predicate) Monitor.wait(obj);
<critical section>
Monitor.pulse(obj);
Monitor.exit(obj);

}

28-02+07-03-2011 MVP'11 - Aalborg University 28

Calls

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

28-02+07-03-2011 MVP'11 - Aalborg University 29

Performance Issues
Too many locks/conditions – overhead.
Too few conditions – spurious wake-ups.

28-02+07-03-2011 MVP'11 - Aalborg University 30

Patterns
Follow these patterns.
Signal if nobody is waiting: nothing.

Signal inside the lock.

Race in testing conditions.
while loop.

Implicit lock.

28-02+07-03-2011 MVP'11 - Aalborg University 31

Example

28-02+07-03-2011 MVP'11 - Aalborg University 32

28-02+07-03-2011 MVP'11 - Aalborg University 33

Example: Producer-Consumer

pthread_cond_t cond_queue_empty, cond_queue_full;
pthread_mutex_t task_queue_cond_lock;
int task_available;
…
main() {

…
task_available = 0;
pthread_init();
pthread_cond_init(&cond_queue_empty, NULL);
pthread_cond_init(&cond_queue_full, NULL);
pthread_mutex_init(&task_queue_cond_lock, NULL);
… /* create and join producer and consumer threads */

}

28-02+07-03-2011 MVP'11 - Aalborg University 34

Example: Producer-Consumer
void *producer(void *producer_thread_data) {

int inserted;
while (!done()) {

create_task();
pthread_mutex_lock(&task_queue_cond_lock);
while (!(task_available == 0)) {

pthread_cond_wait(&cond_queue_empty,
&task_queue_cond_lock);

}
insert_into_queue();
task_available = 1;
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&task_queue_cond_lock);

}
}

task_available == 0 ⇔ cond_queue_empty
task_available == 1 ⇔ cond_queue_full

28-02+07-03-2011 MVP'11 - Aalborg University 35

Example: Producer-Consumer
void *consumer(void *consumer_thread_data) {

while (!done()) {
pthread_mutex_lock(&task_queue_cond_lock);
while (!(task_available == 1)) {

pthread_cond_wait(&cond_queue_full,
&task_queue_cond_lock);

}
my_task = extract_from_queue();
task_available = 0;
pthread_cond_signal(&cond_queue_empty);
pthread_mutex_unlock(&task_queue_cond_lock);
process_task(my_task);

}
}

task_available == 0 ⇔ cond_queue_empty
task_available == 1 ⇔ cond_queue_full

28-02+07-03-2011 MVP'11 - Aalborg University 36

Waiting on Multiple Conditions

lock
while not(conjunction of all conditions)
{

wait(condition 1)
wait(condition 2)
…

}
signal if needed
unlock

28-02+07-03-2011 MVP'11 - Aalborg University 37

Practice with Monitors

Encapsulate to preserve invariants

28-02+07-03-2011 MVP'11 - Aalborg University 38

Invariants

28-02+07-03-2011 MVP'11 - Aalborg University 39

Error

overflow

28-02+07-03-2011 MVP'11 - Aalborg University 40

RW Example

28-02+07-03-2011 MVP'11 - Aalborg University 41

28-02+07-03-2011 MVP'11 - Aalborg University 42

28-02+07-03-2011 MVP'11 - Aalborg University 43

Spin-locks
Mutex:

Threads block until the lock is acquired.
Blocked threads are idle and need to wake up.

Spin-locks:
Threads spin until the lock is acquired.
Blocked threads are not idle!
Better for quick access of small critical sections
with low contention.

28-02+07-03-2011 MVP'11 - Aalborg University 44

Pthread spin locks
Calls:

pthread_spin_init(pthread_spinlock_t*, int)
pthread_spin_destroy(pthread_spinlock_t*)

pthread_spin_lock(pthread_spinlock_t*)
pthread_spin_trylock(pthread_spinlock_t*)
pthread_spin_unlock(pthead_spinlock_t*)

Not related to condition variables because
threads do not wait and are not woken up!

28-02+07-03-2011 MVP'11 - Aalborg University 45

Thread Specific Data
Pass through thread
index or
Map keys to
values/pointers.

28-02+07-03-2011 MVP'11 - Aalborg University 46

Thread Specific Data

28-02+07-03-2011 MVP'11 - Aalborg University 47

Composite Synchronization Constructs

Pthread API offers (low-level) basic functions.
Higher level constructs built with basic
functions.

Read-write locks.
Barriers.
… well in fact these two are part of the API.

28-02+07-03-2011 MVP'11 - Aalborg University 48

Read-Write Locks (revisited)
Read often/write sometimes.

Multiple reads/unique write.
Priority of writers over readers.

Use condition variables.
Count readers and writers.
readers_proceed
⇔ pending_writers == 0 && writer == 0.
writer_proceed
⇔ writer == 0 && readers == 0.

28-02+07-03-2011 MVP'11 - Aalborg University 49

Read-Write Lock - RLocking

void mylib_rwlock_rlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l -> read_write_lock));
while ((l -> pending_writers > 0) || (l -> writer > 0)) {

pthread_cond_wait(&(l -> readers_proceed),
&(l -> read_write_lock));

}
l -> readers ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

28-02+07-03-2011 MVP'11 - Aalborg University 50

Read-Write Lock - WLocking

void mylib_rwlock_wlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l -> read_write_lock));
while ((l -> writer > 0) || (l -> readers > 0)) {

l -> pending_writers ++;
pthread_cond_wait(&(l -> writer_proceed),

&(l -> read_write_lock));
l -> pending_writers --;

}
l -> writer ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

28-02+07-03-2011 MVP'11 - Aalborg University 51

Read-Write Lock - Unlocking
void mylib_rwlock_unlock(mylib_rwlock_t *l) {

pthread_mutex_lock(&(l -> read_write_lock));
if (l -> writer > 0) {

l -> writer = 0;
} else if (l -> readers > 0) {

l -> readers --;
}
if ((l -> readers == 0) && (l -> pending_writers > 0)) {

pthread_cond_signal(&(l -> writer_proceed));
} else {

pthread_cond_broadcast(&(l -> readers_proceed));
}
pthread_mutex_unlock(&(l -> read_write_lock));

}

28-02+07-03-2011 MVP'11 - Aalborg University 52

Barriers
Encoded with

a counter,
a mutex, and
a condition variable.

Idea:
Count & block threads.
Signal them all.

Linear & log barriers.

28-02+07-03-2011 MVP'11 - Aalborg University 53

Barriers

void mylib_barrier(mylib_barrier_t *b, int num_threads) {
pthread_mutex_lock(&(b -> count_lock));
b -> count ++;
if (b -> count == num_threads) { /* last thread */

b -> count = 0;
pthread_cond_broadcast(&(b -> ok_to_proceed));

} else {
pthread_cond_wait(&(b -> ok_to_proceed),

&(b -> count_lock));
}
pthread_mutex_unlock(&(b -> count_lock));

}

28-02+07-03-2011 MVP'11 - Aalborg University 54

Semaphores
Special counter

inc & dec atomic
no access to its value
wait for counter > 0 & dec
inc & signal a blocked thread/process.

Initial counter
if == 0, useful for synchronizing.
if == n (> 0), useful for allowing at most n
threads/processes in a critical section.

28-02+07-03-2011 MVP'11 - Aalborg University 55

Semaphores
#include <semaphore.h>

Calls
sem_init(semt_t*, int, unsigned int value)
sem_destroy(sem_t*)

sem_wait(sem_t*)
sem_trywait(sem_t*)
sem_timedwait(sem_t*, const struct
timespec*)

sem_post(sem_t*)

28-02+07-03-2011 MVP'11 - Aalborg University 56

Producer-Consumers with Semaphores

Semaphore M

Semaphore S

Shared
data

Producer
do

…
P(S)
write(&data)
V(M)

loop

Consumer
do
…
P(M);
if hasData(&data)
read(&data)
V(M)

else
V(S)

loop

28-02+07-03-2011 MVP'11 - Aalborg University 57

Case Study
Successive over-relaxation.

Iteratively compute average values.
Dependency between iteration.

Partitioning?
Identical operations uniformly distributed.
Minimize communication, maximize locality.
Block decomposition of identical size.

Synchronization: barrier.

28-02+07-03-2011 MVP'11 - Aalborg University 58

Example

28-02+07-03-2011 MVP'11 - Aalborg University 59

1-D Partitionings

28-02+07-03-2011 MVP'11 - Aalborg University 60

Barrier

28-02+07-03-2011 MVP'11 - Aalborg University 61

Decreasing Overhead
Minimize blocking time:
Block only on what is
necessary.
Split-phase operations

initiation
completion

Idea:
compute border points
for next iteration
computer inner points

28-02+07-03-2011 MVP'11 - Aalborg University 62

Split-phase Barrier

28-02+07-03-2011 MVP'11 - Aalborg University 63

Split-phase Barrier

28-02+07-03-2011 MVP'11 - Aalborg University 64

Wrong Implementation

Race between different iterations

28-02+07-03-2011 MVP'11 - Aalborg University 65

The Problem

28-02+07-03-2011 MVP'11 - Aalborg University 66

Correction

28-02+07-03-2011 MVP'11 - Aalborg University 67

Correction

28-02+07-03-2011 MVP'11 - Aalborg University 68

28-02+07-03-2011 MVP'11 - Aalborg University 69

Fixed Problem

28-02+07-03-2011 MVP'11 - Aalborg University 70

Improvement
Dependency is only between adjacent blocks.

Current solution is using a global barrier.
We can use semaphores between blocks.

signal & wait similarly to arrive & wait but to the
neighboring threads

28-02+07-03-2011 MVP'11 - Aalborg University 71

Java Threads
start

run

join

yield

28-02+07-03-2011 MVP'11 - Aalborg University 72

Concepts
Same concepts, different constructs

monitors – synchronized methods
threads
critical section – synchronized(obj) { .. }
atomic objects, executor, concurrent collections
(Java ≥5)

2 ways to use threads
extend Thread
implement Runnable

Semantics issues
use volatile for shared variables

28-02+07-03-2011 MVP'11 - Aalborg University 73

Atomic Operations

Implemented using special assembly
instructions – more on than later.

28-02+07-03-2011 MVP'11 - Aalborg University 74

Advanced: Futex
Futex: Fast userspace locking system call.

Wait for a value at a given address to change.
Wake up anyone waiting on an address.

Low-level call usually used to implement locks.
Minix specific, available under Linux.

28-02+07-03-2011 MVP'11 - Aalborg University 75

Avoiding Incorrect Code
Avoid relying on thread inertia.

Threads are asynchronous.
Initialize data before starting threads.
Never assume that a thread will wait for you.

Never bet on thread race.
Assume that at any point, any thread may go
to sleep for any period of time.
No ordering exists between threads unless you
cause ordering.

28-02+07-03-2011 MVP'11 - Aalborg University 76

Avoiding Incorrect Code
Scheduling is not the same as
synchronization.

Never use sleep to synchronize.
Never try to “tune” with timing.

Beware of deadlocks & priority inversion.
One predicate ⇔ one condition variable.

28-02+07-03-2011 MVP'11 - Aalborg University 77

Avoiding Performance Problems
Beware of concurrent serialization.
Use the right number of mutexes.

Too much mutex contention or too much locking
without contention?

Avoid false sharing.

And… don’t forget to compile like this:
gcc –O3 –Wall –o hello hello.c -lpthread

