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i How much do we need to know?

= Important to know the architecture of parallel
hardware.

= Not all details are important to programmers
= keep portability
= keep up with technological changes

= The point: Get a meaningful model.




i Intel Core Duo
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Figure 2.22 State diagram of a simple three-state coherence protocol.




i AMD Dual Core Opteron
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i SMP

Memory
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i Larger SMP — Sun Fire

18 boards connected
by a crossbar

switch.

Snooping buses.
Directory based cache
B a1s coherence_protocol.
Crossbar Scalable/higher

Switch latency.

Note: Expensive
hardware.
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= N X N connections.
S . Expensive, limited.

i
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i Heterogeneous chips

= GPUs

= 800 ALU on ATI’s latest 4800 series.

= --logic, ++computational units

s FPGAS
= PCI boards available
= reconfigurable

= Cell

= Dual-threaded PPC — PPU, 64 bits
= 8X SPU
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i Cell architecture
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i Clusters

= “Cheap” PCs connected together.
= GB ethernet
= Infiniband

Memory private to each machine,

use message based communication.

Scalable but high latency.
= Sold by racks.
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i BlueGene

Shared L3 cache/memory
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i Interconnect
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i Broadcast/Reduction

pe

Broadcast Reduce
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This is the logical view, what happens from the programmer’s perspective.
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i Cut-through routing

Understanding communication

= Simplified packet routing:
= Packets take the same path
(1x routing information).

= In sequence packet delivery (no sequencing).

(for good networks).

= Fixed size unit for packets = flow control digits
(flits).

= Error detection at message level, cheap detection
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It is an optimization for interconnection networks of parallel machines since

error rates are very low (dedicated network).
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Figure 2.26 Passing a message from node /% to /% (a) through a store-and-forward communica-
tion network; (b) and (c) extending the concept to cut-through routing. The shaded regions represent
the time that the message is in transit. The startup time associated with this message transfer is as-
sumed to be zero. 17
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i Lessons

= Very different architectures.

= SMP

= Distributed
= But we want one meaningful model.
= Hints:

= local accesses - cheap

= non-local accesses - expensive
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i RAM model

= Sequential execution unit with unbounded
memory.

= every operation takes 1 unit of time

= Limited
= ok for algorithms — reason on complexity
= unrealistic
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i Application of the RAM model

1 location=-1; 1 location=-1;
2 for(j=0; j<n; j++) 2 hi=n-1;
g f 3 1lo=0;
4 if(A[Jj]==searchee) 4 while(lo!=hi)
5 { 5 {
6 location=j; 6 mid=lo+floor((hi-lo+1)/2);
7 break; 7 if (A[mid]==searchee)
8 } 8 break;
9 3 9 if (A[mid]>searchee)
10 hi=mid;
11 else
12 lo=mid+1;
13 )

update of location missing
Expected: O(n), O(log n)

(array must be sorted)
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i PRAM model

= Several execution units accessing one shared
unbounded memory
= global access
= synchronous access — one global clock
= contention resolved by pre-defined rules
= EREW, CREW, CRCW, ERCW
= least powerful, least convenient: EREW

= most powerful, most convenient: CRCW

= lesson: reason on CRCW but apply on EREW because
it is possible to simulate one with the other (in
polynomial time)

= like RAM: good for algorithms, complexity...
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i CTA (Candidate Type Architecture)

= Account for communication costs.
= Applies to clusters & SMPs.
= Local/non-local accesses.

= Goal: Achieve in practice the predicted running
time. PRAM is misleading in that respect.

= The catch: Not easy to estimate communication
Ccosts.

= Model:
= interconnected processors with RAM

= topology not specified but this impacts
communication costs.
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i Typical A

Architecture Family Computer Lambda
Chip Multiprocessor* AMD Opteron 100
Shared-memory Multiprocessor Sun Fire E25K 400-660
Co-processor Cell N/A

Cluster HP BL6000 w/GbE 4,160-5,120
Supercomputer BlueGene/L 8960

*CMP's & value measures a transfer between L1 data caches on chip.
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i Lesson

= Use locality
= temporal & spatial

= sometimes redundant computation is better than
sending data around

= Exact number of processors supplied at
runtime.
= scale/not tied to one setup
= Note: A increases with P.
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i Memory reference mechanisms

= Shared memory

= avoid race conditions, needs synchronization
= One-sided

= not common

= private (local) & shared non-coherent memory
= Message passing — 2-sided

= MPI

= Complex communication protocols.
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i Memory consistency models

= Sequential consistency — expensive.
= serialize the operations of all processors
= operations obey specified order

= Relaxed consistency — weaker.
= variations

= Keep in mind: There are hardware tricks to
get sequential consistency (CAS/TAS).
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Interconnects
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‘L Bus Based Networks
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Good:

*Cost scales linearly with the number of nodes.

*The distance between all the nodes is constant.

*It is ideal for broadcasting.

Bad:

*Shared bandwidth between all the nodes -> bottleneck in performance.

In practice bus based only for small SMP (Intel). Caches are only a trick to
reduce bandwidth consumption on the bus (not to reduce bandwidth as stated
in the book).

Both for processors & memory.
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‘L Crossbar Networks

Memory Banks

O A A b1

A switching
element

Processing Elements

- Parallel access — expensive.
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Grid to connect p processors to b memory banks. Non blocking in the sense

that a connection (routing) does not block the connection of any other
processing node, in contrast to multistage networks.

Good: scalable in performance (non blocking).
Bad: number of switches = p*b, not scalable in cost.
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i Omega networks

Multi-stage network — compromise cost/performance.
N nodes — log n stages.
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Figure 2.13  An example of blocking in omega network: one of the messages (010 to 111 or 110
to 100) is blocked at link AB.
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‘L Linear Arrays and Meshes
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Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.
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Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

Wrap around changes the number of neighbors and distance for some nodes.

Linear array: each node has 2 neighbors (except start & end). It becomes a
ring (or 1-D torus) with wraparound.

2-D mesh has p processors so the dimension is given by sqrt(p). Every node
(except on the border) has 4 neighbors. Attractive from a wiring point of view.
Adding wraparound links gives a 2-D torus.

3-D, similarly. Every time we add a dimension, we add 2 neighbors. 3-D
meshes good for physical simulations because they correspond to the
modeled problem and the way processing is distributed.
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Hypercubes —

2°d nodes, '
d=dimension, O——8 —
good routing, /| wn/” ‘ L|>/ ‘
relatively expensive,
low congestion nyarVa / /

4-I) hypercube

Figure 217  Construction of hypercubes from hypercubes of lower dimension.
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i Fat trees

More bandwidth where it is needed.

Figure 2.19 A fat tree network of 16 processing nodes.
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i Evaluating The Networks

= All the previous topologies have advantages
and disadvantages.

= Important factors: cost and performance.

= Define criteria to characterize cost and
performance.
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Your turn: Give suggestions on measure criteria.
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i Criteria

= Diameter: maximum distance p, <> p,.
= Connectivity: measure of multiplicity of
paths.

= Bisection width: minimum number of links
to cut in order to partition the network in 2
equal halves.

m Bisection bandwidth: minimum volume of
communication allowed between 2 halves.

m Cost: number of communication links, i.e.,
wires.
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Distance = shortest path between 2 nodes.
Diameter: How far 2 nodes may be.

*Completely connected: 1.
«Star connected: 2.
*Ring: floor(p/2).

+2-D mesh without wraparound: 2(dim-1). With wraparound: 2*floor(dim/2).

Note: dim = sqrt(p).
*Hypercube: dim (=log p).
«Complete binary tree: height=h, p=2"1-1, h =log((p+1)/2 ), travel 2h.
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i Comparing The Topologies

Table 21 A summary of the characteristics of various static network topologies connecting p
nodes.

Bisection ~ Arc Cost
Network Diameter Width Connectivity  (No. of links)
Completely-connected ijjy p—1 plp—1)/2
Star 1 1 p=
Complete binary tree 2log((p+ 1)/2) |1 1 p—1
Linear array p—1 1 1 p—1
2-D mesh, no wraparound  2(,/p — 1) JP 2 2p—JP)
2-D wraparound mesh 2] 2./p 4 2
Hypercube log p
Wraparound k-ary d-cube  d|k/2] 2F7=1 2d dp
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