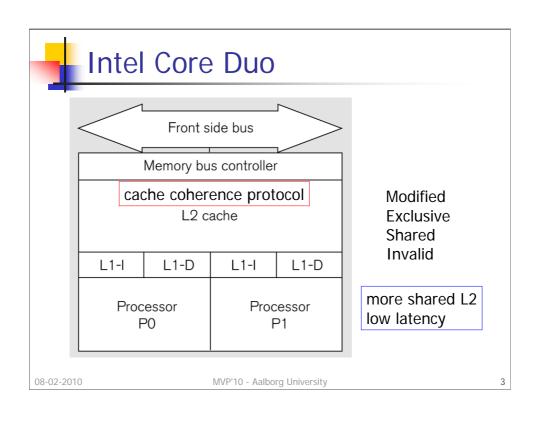
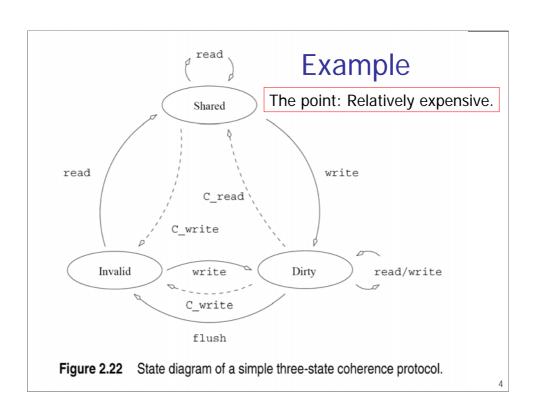
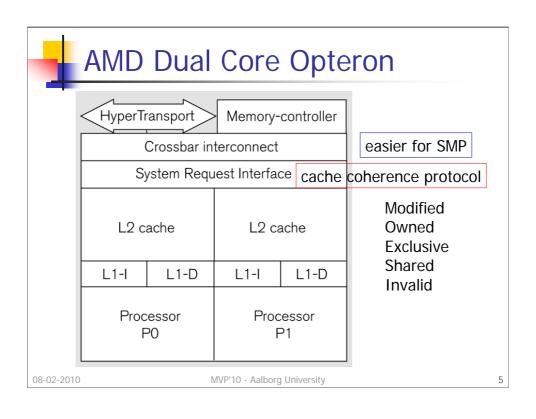


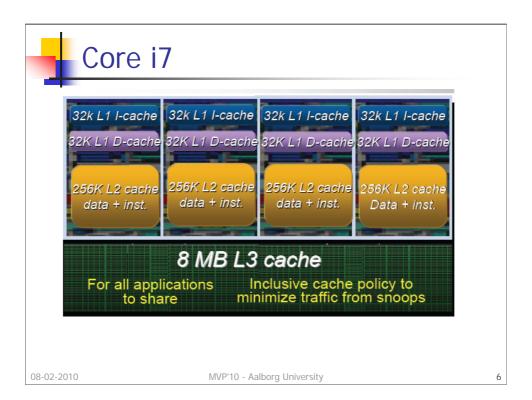
Parallel Computers

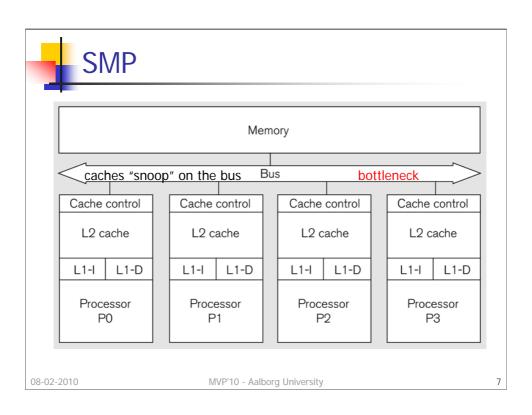
Alexandre David 1.2.05 adavid@cs.aau.dk

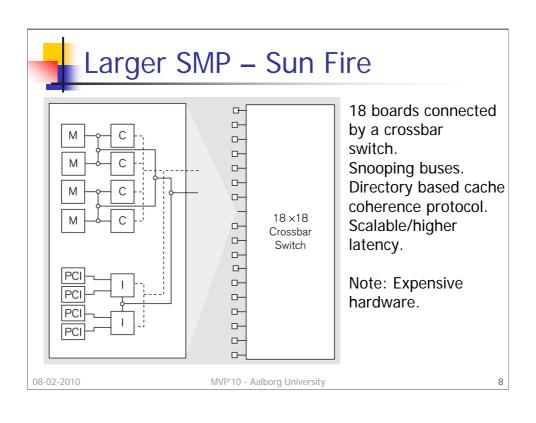


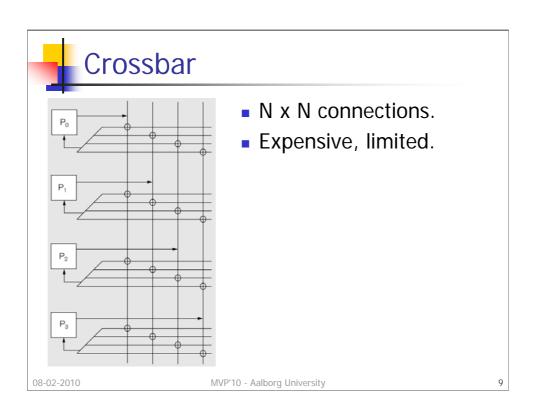

How much do we need to know?

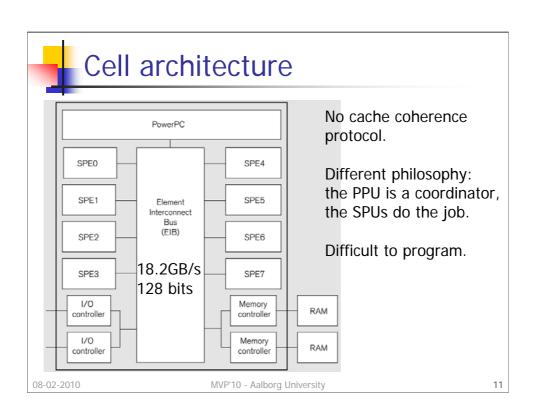

- Important to know the architecture of parallel hardware.
- Not all details are important to programmers
 - keep portability
 - keep up with technological changes
- The point: Get a meaningful model.


08-02-2010


MVP'10 - Aalborg University





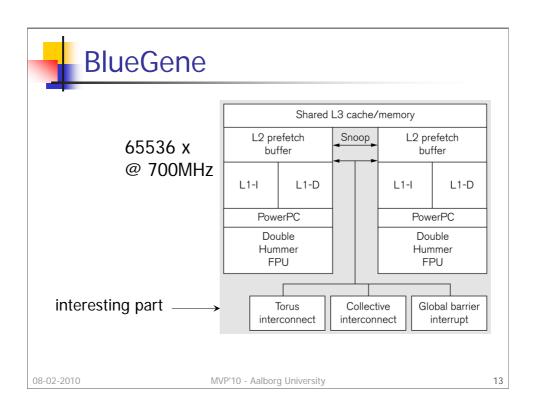


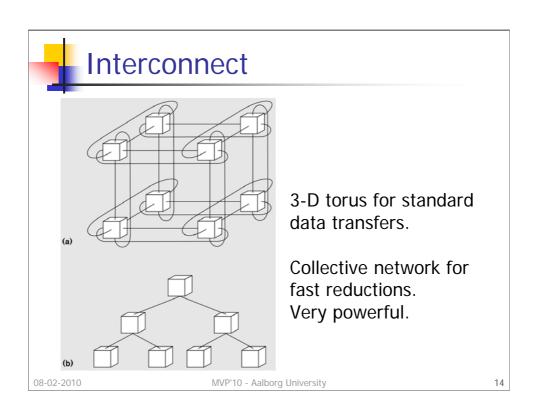
Heterogeneous chips

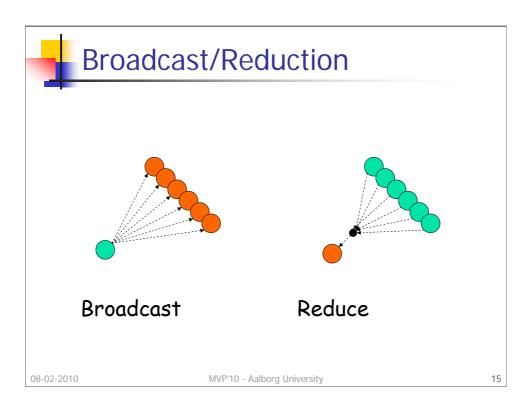
- GPUs
 - 800 ALU on ATI's latest 4800 series.
 - --logic, ++computational units
- FPGAs
 - PCI boards available
 - reconfigurable
- Cell
 - Dual-threaded PPC PPU, 64 bits
 - 8x SPU

08-02-2010

MVP'10 - Aalborg University




Clusters

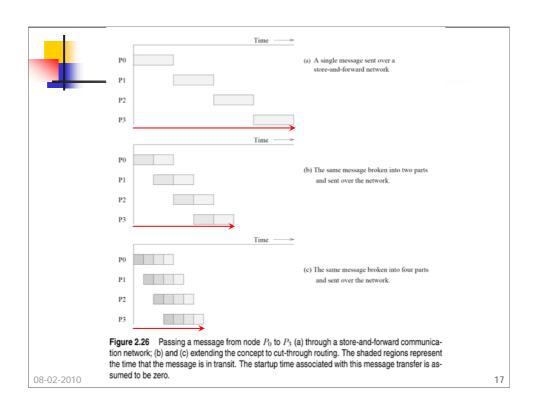

- "Cheap" PCs connected together.
 - GB ethernet
 - Infiniband
 -
 - Memory private to each machine, use message based communication.
 - Scalable but high latency.
 - Sold by racks.

08-02-2010

MVP'10 - Aalborg University

This is the logical view, what happens from the programmer's perspective.

Cut-through routing Understanding communication


- Simplified packet routing:
 - Packets take the same path (1x routing information).
 - In sequence packet delivery (no sequencing).
 - Error detection at message level, cheap detection (for good networks).
 - Fixed size unit for packets = flow control digits (flits).

08-02-2010

MVP'10 - Aalborg University

16

It is an optimization for interconnection networks of parallel machines since error rates are very low (dedicated network).

Lessons

- Very different architectures.
 - SMP
 - Distributed
- But we want one meaningful model.
- Hints:
 - local accesses cheap
 - non-local accesses expensive

08-02-2010

MVP'10 - Aalborg University

RAM model

- Sequential execution unit with unbounded memory.
 - every operation takes 1 unit of time
- Limited
 - ok for algorithms reason on complexity
 - unrealistic

08-02-2010

MVP'10 - Aalborg University

Application of the RAM model

```
location=-1;
                                       location=-1;
  for(j=0; j<n; j++)
                                    2 hi=n-1;
3
                                    3 lo=0;
     if(A[j]==searchee)
                                    4 while(lo!=hi)
5
                                    5 {
6
      location=j;
                                    6
                                         mid=lo+floor((hi-lo+1)/2);
7
      break;
                                         if(A[mid]==searchee)
8
                                    8
                                          break;
9
                                         if(A[mid]>searchee)
                                    9
                                   10
                                          hi=mid;
                                   11
                                         else
                                   12
                                           lo=mid+1;
                                   13
```

Expected: O(n), O(log n)

update of location missing

(array must be sorted)

08-02-2010

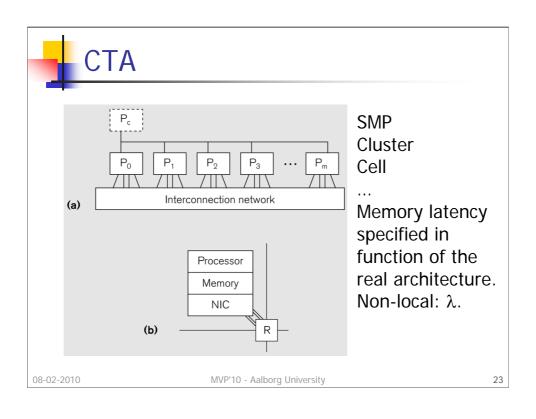
MVP'10 - Aalborg University

PRAM model

- Several execution units accessing one shared unbounded memory
 - global access
 - synchronous access one global clock
 - contention resolved by pre-defined rules
 - EREW, CREW, CRCW, ERCW
 - least powerful, least convenient: EREW
 - most powerful, most convenient: CRCW
 - lesson: reason on CRCW but apply on EREW because it is possible to simulate one with the other (in polynomial time)
 - like RAM: good for algorithms, complexity...

08-02-2010

MVP'10 - Aalborg University



CTA (Candidate Type Architecture)

- Account for communication costs.
 - Applies to clusters & SMPs.
 - Local/non-local accesses.
 - Goal: Achieve in practice the predicted running time. PRAM is misleading in that respect.
 - The catch: Not easy to estimate communication costs.
- Model:
 - interconnected processors with RAM
 - topology not specified but this impacts communication costs.

08-02-2010

MVP'10 - Aalborg University

08-02-2010

Architecture Family	Computer	Lambda		
Chip Multiprocessor*	AMD Opteron	100		
Shared-memory Multiprocessor	Sun Fire E25K	400-660		
Co-processor	Cell	N/A		
Cluster	HP BL6000 w/GbE	4,160-5,120		
Supercomputer	BlueGene/L	8960		
*CMP's λ value measures a transfer between L1 data caches on chip.				

MVP'10 - Aalborg University

Lesson

- Use locality
 - temporal & spatial
 - sometimes redundant computation is better than sending data around
- Exact number of processors supplied at runtime.
 - scale/not tied to one setup
 - Note: λ increases with P.

08-02-2010

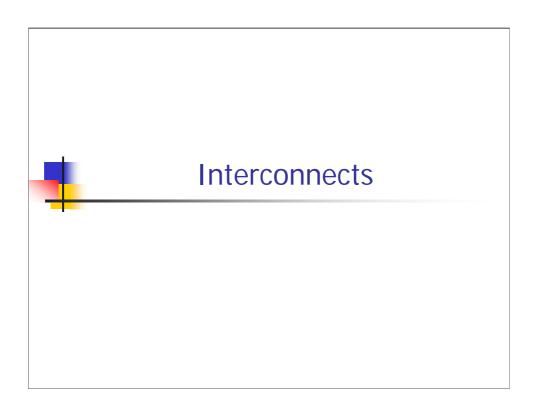
MVP'10 - Aalborg University

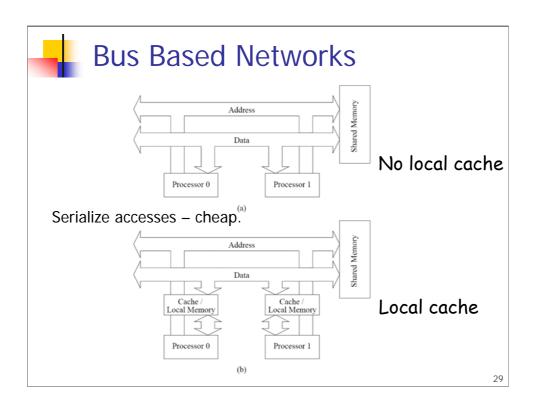
Memory reference mechanisms

- Shared memory
 - avoid race conditions, needs synchronization
- One-sided
 - not common
 - private (local) & shared non-coherent memory
- Message passing 2-sided
 - MPI
 - Complex communication protocols.

08-02-2010

MVP'10 - Aalborg University



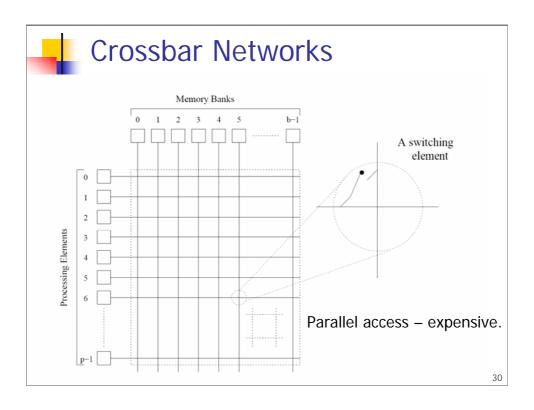

Memory consistency models

- Sequential consistency expensive.
 - serialize the operations of all processors
 - operations obey specified order
- Relaxed consistency weaker.
 - variations
- Keep in mind: There are hardware tricks to get sequential consistency (CAS/TAS).

08-02-2010

MVP'10 - Aalborg University

Good:


- •Cost scales linearly with the number of nodes.
- •The distance between all the nodes is constant.
- •It is ideal for broadcasting.

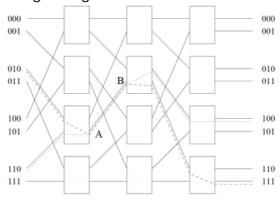
Bad:

•Shared bandwidth between all the nodes -> bottleneck in performance.

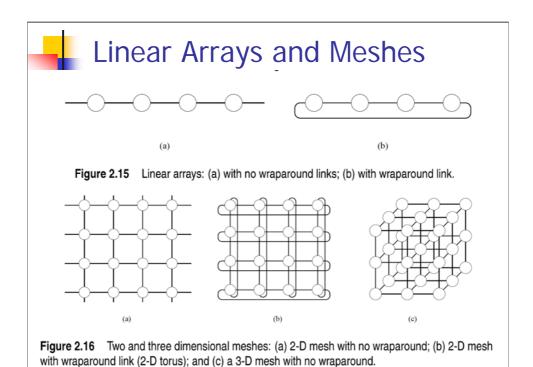
In practice bus based only for small SMP (Intel). Caches are only a trick to reduce bandwidth consumption on the bus (not to reduce bandwidth as stated in the book).

Both for processors & memory.

Grid to connect *p* processors to *b* memory banks. Non blocking in the sense that a connection (routing) does not block the connection of any other processing node, in contrast to multistage networks.


Good: scalable in performance (non blocking).

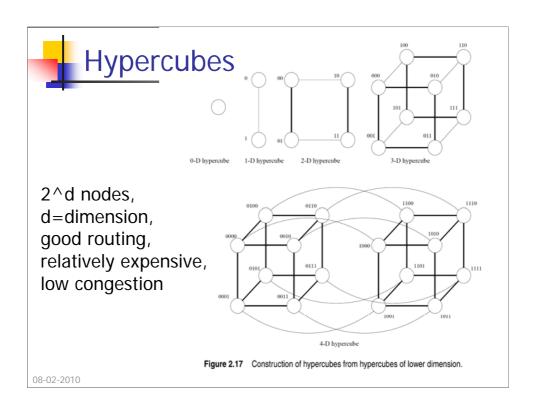
Bad: number of switches = p*b, not scalable in cost.

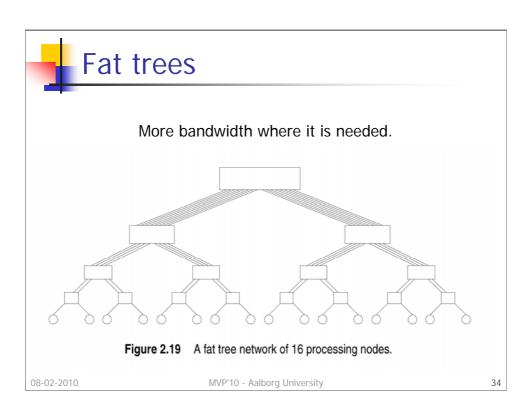


Omega networks

Multi-stage network – compromise cost/performance. N nodes – log n stages.

Figure 2.13 An example of blocking in omega network: one of the messages (010 to 111 or 110 to 100) is blocked at link AB.




Wrap around changes the number of neighbors and distance for some nodes. Linear array: each node has 2 neighbors (except start & end). It becomes a

ring (or 1-D torus) with wraparound.

2-D mesh has p processors so the dimension is given by sqrt(p). Every node (except on the border) has 4 neighbors. Attractive from a wiring point of view. Adding wraparound links gives a 2-D torus.

3-D, similarly. Every time we add a dimension, we add 2 neighbors. 3-D meshes good for physical simulations because they correspond to the modeled problem and the way processing is distributed.

Evaluating The Networks

- All the previous topologies have advantages and disadvantages.
- Important factors: cost and performance.
- Define criteria to characterize cost and performance.

08-02-2010

MVP'10 - Aalborg University

35

Your turn: Give suggestions on measure criteria.

Criteria

- Diameter: maximum distance $p_a \leftrightarrow p_b$.
- Connectivity: measure of multiplicity of paths.
- Bisection width: minimum number of links to cut in order to partition the network in 2 equal halves.
- Bisection bandwidth: minimum volume of communication allowed between 2 halves.
- Cost: number of communication links, i.e., wires.

08-02-2010

MVP'10 - Aalborg University

36

Distance = shortest path between 2 nodes.

Diameter: How far 2 nodes may be.

- •Completely connected: 1.
- •Star connected: 2.
- •Ring: floor(p/2).
- •2-D mesh without wraparound: 2(dim-1). With wraparound: 2*floor(dim/2). Note: dim = sqrt(p).
- •Hypercube: dim (= $\log p$).
- •Complete binary tree: height=h, $p=2^{h+1}-1$, $h = \log((p+1)/2)$, travel 2h.

Comparing The Topologies

Table 2.1 A summary of the characteristics of various static network topologies connecting p

Network	Diameter	Bisection Width	Arc Connectivity	Cost (No. of links)
Completely-connected	1	$p^2/4$	p - 1	(p(p-1)/2)
Star	2	1	1	p-1
Complete binary tree	$2\log((p+1)/2)$	1	1	p - 1
Linear array	p-1	1	1	p - 1
2-D mesh, no wraparound	$2(\sqrt{p}-1)$	\sqrt{p}	2	$2(p-\sqrt{p})$
2-D wraparound mesh	$2\lfloor\sqrt{p}/2\rfloor$	$2\sqrt{p}$	4	2p
Hypercube	$\log p$	p/2	$\log p$	$(p \log p)/2$
Wraparound <i>k</i> -ary <i>d</i> -cube	$d\lfloor k/2 \rfloor$	$2k^{d-1}$	2d	dp

08-02-2010 MVP'10 - Aalborg University 37