MVP
Introduction to Parallel

!'_ Programming

Alexandre David
1.2.05
adavid@cs.aau.dk

i Notion of Parallelism

= Familiar concept
= ex: building a house, car manufacturing
=« decomposition into tasks
= task dependency
= Static decomposition

= Less familiar concept
= dynamic decomposition

= dynamic load balancing
= Synchronization

i Implicit Parallelism

= Instruction-level parallelism
= independent instructions run in parallel

= Super-scalar CPUs
= different execution units
= Pipelines

= cut instructions in small steps executed by
different states and keep all the stages busy.

= And other techniques: OO exec, prefetch...

Pipelining and Superscalar
Execution - Example

Compiler
c=a+b+c+d
as
c=(a+b)+(c+d)

CPU

. load R1,@1000

. load R2,@1008

. addR1,@1004

. addR2,@100C

. add R1,R2

O UNDhWN =

. store R1,@2000

Instruction cycles

0 2 4 6 8
| | | | |
IF | ID |OF
IF | ID |OF
IF |ID|OF | E
IF |ID|OF | E
IF | ID
IF | ID WB

2x IF, ID, OF, .. in the same cycle:
superscalar.

i The Change in Thinking

= S0 far, programmer got the benefits of
implicit parallelism for free.
= No paradigm changes, profit from Moore’s law.

« Sequential algorithms, sequential reasoning,
sequential programming, the hardware keeps it
sequential.

= We are TOO used to that.
= Multi-cores

= No implicit parallelism anymore.
= We need to change habits.

i Challenges

= No existing bullet-proof
= language for parallelism,
= methodology & technique for parallelism.

= EXisting programs cannot exploit multi-cores.

s Programmers do not how to write parallel
programs in general.

= Algorithms are generally sequential and not
fit for parallel programming directly.

= Write parallel & scalable programs to use
more cores efficiently “for free”.

i GPUs

= Special case
= parallel by design from the start
= graphical processing pipelined
= SO far application specific

= try to generalize now but still, SIMD type of
computations, computation intensive
applications.

i Parallel Hardware

= Home PC, stations.

= Supercomputers — history

= but still powerful shared memory machines
Vega 3 Series from Azul Systems up to
864 cores, 768GB RAM, for Java applications.

= Clusters — popular, cheap, scalable.
= Grid computing.

i Parallel vs. Distributed

= Parallel”: “parallel in the small”.
« Shared memory, multi-cores

= Distributed”: “parallel in the big”.
= Clusters, different machines

= Can have both of course.

i System Level Parallelism

x See PSS.

= Not a solution, limited to the number of tasks
you have.

= Important to know:
= bound threads — scheduled by the OS
= unbound threads — scheduled by a library.

10

i Paradigm Shift

= What compilers do:
= change ordering,
= Fremove redundancy,
= reallocate resources,

= but keep the semantics of the sequential
program.

= They preserve the original algorithm.
= We need to design parallel algorithms,
compilers are intrinsically limited.

= Automatic algorithmic transformations are
limited.

i Example

= Sequential description.

s Need to reformulate to
get it parallel.

= Still simple because
additions are
associative.

= However, operations on
double are
approximate. The
ordering matters for
the precision.

sum = 0
for(1=0; I<n; ++1)
{

sum += Xx[1]

}

12

Time

76
2\
72
AN
66
PZEE N
48
AN
35
AN
25
AN
10
N
7 3 156101318 6 4

14+18-02-2011

Array elements

Time

.
-

35

N

10

25

N

I?

3 15

Array elements

10

What if it's not +?

MVP'11 - Aalborg University

/\

/\

10

/\ <N

13

18 6

A

13

i Prefix Sum

= Useful primitive, aka
scan.

= Input: sequence of x..

= Output: sequence of ..

Yi=SUM;<; X

= How to parallelize?

@

Forn > O0:
y[01=x[0]
for(i1=1;
{

1I<n;

++1)

yLrl=yLi-1]+x[1]

}

14

i Prefix Sum - sum

T
76
0|35
35 41
010 35| 66
10 o5 31 10
0| 7 10|25 35 | 48 66 | 72
Array 13
o B 3 15 10 13/ \18 5/ \4
Parallel prefix 7 10 05 35 48 66 79 76

14+18-02-2011 MVP'11 - Aalborg University 15

i Prefix Sum - prefix

Array

7
elements

Parallel prefix 7

A 41
3g|| 66]

10

76

16

Prefix Computation 2

function prefix*(A,n)
B[1]:= A[1]
if n>1 then
for i = 1 to n/2 pardo
Clil:=A[2i-1]+A[2i]
od
D:=prefix*(C,n/2)
for i = 1 to n/2 pardo
B[2i]:=D[i]
od
for i = 2 to n/2 pardo
B[2i-1]:=D[i-1]+A[2i-1]
od
fi
prefix* =B
end

17

Parallel Prefix Computation 2

function prefix*(A,n)[py,....p,]
p.: B[1]:= A[1]
if n>1 then
for i = 1 to n/2 pardo
pi: Clil=A[2i-1]+A[2i]
od
D:=prefix*(C,n/2)[py,....pn/>]
for i = 1 to n/2 pardo
p: B[2i]:=D[i]
od
for i = 2 to n/2 pardo
pi: B[2i-1]:=D[i-1]+A[2i-1]
od
fi
prefix*:=B
end

18

i Prefix Computation 2

0

1 76 |

Array
elements

Parallel prefix

i Pause

= What have we done here?

s Is it scalable?
= What does it mean?

= IS it efficient?
= Is it optimal?
= What does it mean?
= What about correctness?
= It is cache friendly?

20

i Concept of a Thread (PSS)

s Thread of execution

= Private
= program
= Stack
= program counter

= Shared

= Memory
= I[/O

21

i Example of Execution Platform

32k L1 I-cache | 32k L1 |-cache | 32k L1 I-cache | 32k L1 I-cache

g !R r! -CECT

o L2 CaCHE

. data + inst.

e DR ILZ A CHE] IP5H

. data +inst | data + inst.

8 MB L3 cache

For all applications Inclusive cache policy to
to share minimize traffic from snoops

14+18-02-2011 MVP'11 - Aalborg University 22

i Execution Platform of the Book

RAM

L3 Cache

Front side bus

=

~

I

Memory bus controller

Memory bus controller

Memory bus controller

Memory bus controller

L2 cache L2 cache L2 cache L2 cache
L1-1{L1-D| L1~ {L1-D || L1-1 |L1-D| L1-1 [L1-D || L1~ {L1-D] L1-1 {L1-D || L1-1 | L1-D| L1-1 |L1-D
Processor | Processor Processor | Processor Processor | Processor Processor | Processor

PO P1 P2 P3 P4 P5 P6 P7

14+18-02-2011

MVP'11 - Aalborg University

23

Limitations of Memory System
Performance

= The memory system is most often the
bottleneck.

= Performance captured by
= latency and
« bandwidth.

s Remark: In practice latency is complicated
to define: CL2, CL3, 2-2-2-5,...

14+18-02-2011 MVP'11 - Aalborg University

24

i Effect on Performance: Example

= Processor @1GHz (1ns cycle) capable of
executing 4 IPC + DRAM with 100ns
latency.

s 4 [PC @1GHz -> 4GFLOPS peak rating.

= Processor must wait 100 cycles for every
request.

= Vector operations (dot product) @10MFLOPs.

25

i Improving with Cache

= Note: Often “$$"” on pictures (cash).

= Hierarchical memory architecture with
several levels of cache (2 common).

= Instruction and data separate for L1.
s Low latency, high bandwidth, but small.
(?) = Why does it improve performance???

26

i Why is $$ good?

= Temporal locality

= Repeated access to the same data in a small
window of time.

= Spatial locality

= Consecutive data accessed by successive
Instructions.

= Vital assumptions, almost always hold.
= Very important for parallel computing.

27

i Case Study: Count 3s

int count3s(int *array, int length)

{

int count = O;
for(i = O; i < length; ++i)
{

if (array[i] == 3) count++;

}

return count;

Serial code — parallel code?

C pointer

dereference

28

iTryl

= Partition the input
= Static data partitioning

= Shared variable counter

length=16 t=4

array [2 (3|02 (3 |3|1]0]|0|1[3|2]|2]|3]1

L A A A

~ T N -

Thread O Thread 1 Thread 2 Thread 3

iTryl

Thread creation — >

Partitioning — >

Count —

O~ Wk

W

10
11
12
13
14
15
16
17
18
19
20
21

7a
20
24
25
26
27
28
29
30
31
32

int t; /* number of threads */
int *array;
int length;
int count;

void count3s()

{
int i;
count = 0;
/* Create t threads */
for(i=0; i<t; i++)
{

thread create(count3s_thread, i);

! (wait for the threads missing)

return count;

}

void count3s thread(int id)

{
/* Compute portion of the array that this thread

should work on */
int length per thread=length/t;
int start=id*length per thread;

for(i=start; i<start+length per thread; i++)

{

if(array[i]==3)

{ .
count++; Not atomic — race

}
}

i What can happen?

read count

inc local value

write count

count: 0

count: 1

count: 1

Expected: 2

read count

inc local value

write count

Race: The result depends on the interleaving
of the threads. It is unpredictable.

31

i Try 2: Make It Atomic

s Use a mutex
= locked
= unlocked

s Mutexes are used to define critical sections

32

Try 2

o= W N =

00 ~1 Oh

11
12
13
14
15
16
17
18

mutex m;

void count3s thread(int id)

{

/* Compute portion of the array that this thread
should work on */

int length per thread=length/t;

int start=id*length per thread;

for(i=start; i<start+length per thread; i++)
{
1f (array[1]==3)
{
mutex lock(m);
count++;
mutex unlock(m);

}

33

i Correct But Abysmal Performance

12

10.049

10

(0]

Time (seconds)
o))

.

0.45273

Serial time T=1 T=2 T=4 T=8

14+18-02-2011 MVP'11 - Aalborg University

34

iTryB

1 private count[MaxThreads];
2 mutex m;

3

4 void count3s thread(int id)
> |

6

/* Compute portion of array for this thread to
work on */

7 int length per thread=length/t;
8 int start=id*length per thread;
9

10 for(i=start; i<start+length per thread; i++)
11 {

12 if(array[i] == 3)

13 {

14 private count[id]++;

15 }

16 }

17 mutex lock(m);

18 count+=private count[id];

19 mutex unlock(m);

20 }

14+18-02-2011 MVP'11 - Aalborg University

{ Better But Still Not Good

0.9

0.85483

0.8

0.77181—
07 0.68302

0.6

0.5 0.48477
0.45273

0.4 |

Time (seconds)

0.3 -

0.2 -

0.1 4

Serial time T=1 =2 =4 =28

14+18-02-2011 MVP'11 - Aalborg University

i Recall the Architecture

RAM

L3 Cache

<Cache coherence protocol

Front side bus

I

=

Memory bus controller

Memory bus controller

Memory bus controller

Memory bus controller

L2 cache L2 cache L2 cache L2 cache
L1-1{L1-D| L1~ {L1-D || L1-1 |L1-D| L1-1 [L1-D || L1~ {L1-D] L1-1 {L1-D || L1-1 | L1-D| L1-1 |L1-D
Processor | Processor Processor | Processor Processor | Processor Processor | Processor

PO P1 P2 P3 P4 P5 P6 P7

14+18-02-2011

MVP'11 - Aalborg University

37

o L2 CaCHE

e DR ILZ A CHE] IP5H

i data + inst. || data +inst. || data £ inst.

8 MB L2 cache

For all applications
to share

Inclusive cache policy to
minimize traffic from snoops

14+18-02-2011 MVP'11 - Aalborg University

38

i False Sharing

= Caches have some granularity =
cache line.

= Usually on several words, 2-4 words.

= Consecutive counters are not logically shared
but they are physically shared on the same
cache line.

= The cache coherence protocol kicks in and
kills performance because the line is
constantly moving.

39

i Cache Coherence Protocols

= We need additional hardware to keep
multiple copies of the same memory bank
consistent with each other.

= We have seen that $$ is good but it does
not come for free.

= Mechanism known as cache coherence
protocol, usually described as state
machines.

40

PO Pl PO P1

load x load x write #3, x
O
. o
Invalidate
Memory Memory
(a)
PO Pl PO Pl
load x load x write #3, X
x =1 x =1 X =3 X =3
0
x =1 X = 3
Update
Memory Memory
(b)

Figure 2.21 Cache coherence in multiprocessor systems: (a) Invalidate protocol; (b) Update pro-
tocol for shared variables.

Try 4: Pad the Counters

1 struct padded_int

2

3 int value;

4 char padding[60];

5 } private count[MaxThreads];

6

7 void count3s thread(int id)

8 {

9 /* Compute portion of the array this thread should

work on */

10 int length per thread=length/t;
11 int start=id*length per thread;
12

13 for(i=start; i<start+length per thread; i++)
14 {

15 if (array[i] == 3)

16 {

17 private count[id]++;

18 }

19 }
20 mutex lock(m);
21 count+=private count[id].value;
22 mutex_unlock(m);
23 }

14+18-02-2011 MVP'11 - Aalborg University

i Correct and Good

0.6

0.5

0.49904

0.4 -

0.3 -

Time (seconds)

0.2 -

0.1 |

14+18-02-2011

0.45273

Serial time

T=1

0.27993

0.14763

0.14352

T=2 T=4 T=8

Limitation of the hardware

MVP'11 - Aalborg University

43

Confirmation of the Memory Bandwidth
i Limit

0.5

Serial =1

Time (seconds)

Number of threads

no 3 in the array

14+18-02-2011 MVP'11 - Aalborg University

44

i Lessons

= Correctness
= Performance
= Scalability

= Portability

45

