

MVP Welcome

Alexandre David 1.2.05 adavid@cs.aau.dk

Presentation of the Course

- Parallel Computing
 - Little on parallel hardware
 - Mostly on parallel algorithms and design
- Models for Parallelism
- Tools for Parallelism (MPI, pthreads, OpenMP...)
- 15 lectures, 3x30 min + exercises

Course Book

- Principles of Parallel Programming.
- Recent and accessible book.
- Follow the suggested order
 + complements on topics
 not covered.
- New book, updated course.
 Still not an easy course.
- Chapter 2 from Intel
 Threading Building Blocks –
 copy.

Course & Assignments

- Lectures will be alternated between theory & practice.
- Assignments:
 - 5 assignments, 4 first compulsory.
 - Model: complete them until they are good.
 - Careful: Do not accumulate delay.
 - 2 weeks for completing every assignment.
 - Examination through assignments.
 - Exercise sessions for doing the assignments.
 - Little extra time for writing down ~ preparing for an exam.

Goals of the Course

- Design, analysis, and implementation of parallel algorithms.
 - Principles of parallel algorithm design.
 - Modeling of parallel programs.
 - Tools such as MPI, pthreads, and OpenMP.
 - Some examples.
 - Matrix multiplication/inversion.

A Few Questions ?

- Do we need parallelism?
- How do you specify and coordinate concurrent tasks?
- What are the pitfalls of parallel programming?
- Are there standards?
- Do you need to accelerate applications?
- Why do you need to think differently?

Trends in Hardware

- Everything points towards parallelism from multi-core, hyper-threading, multi-threads, superscalar, ... technologies.
 - Do you know these buzz words?
- Because
 - Limits to continue to increment performance with single processors.
 - Other constraints like heat, complexity, yields, etc...

Arguments for Parallelism

- Computational power:
 - Moore's law.
 - Translating transistors into useful OPS.
- Memory/disk speed:
 - Performance/yr: CPU +40%, DRAM +10%.

- How to feed data?
- What are the problems?
- Design of core i7.
- Parallel platforms: larger aggregate cache+bandwidth+IPC...