MVP

Welcome

Alexandre David

1.2.05
adavid@cs.aau.dk

Presentation of the Course

- Parallel Computing
- Little on parallel hardware
- Mostly on parallel algorithms and design
- Models for Parallelism
- Tools for Parallelism (MPI , pthreads, OpenMP...)
- 15 lectures, 3×30 min + exercises

Course Book

Pearson International Edition

PRINCIPLES OF
Parallel Programming

Calvin Lin
Lawrence Snyder

- Principles of Parallel Programming.
- Recent and accessible book.
- Follow the suggested order + complements on topics not covered.
- New book, updated course. Still not an easy course.
- Chapter 2 from Intel Threading Building Blocks copy.

Course \& Assignments

- Lectures will be alternated between theory \& practice.
- Assignments:
- 5 assignments, 4 first compulsory.
- Model: complete them until they are good.
- Careful: Do not accumulate delay.
- 2 weeks for completing every assignment.
- Examination through assignments.
- Exercise sessions for doing the assignments.
- Little extra time for writing down ~ preparing for an exam.

Goals of the Course

- Design, analysis, and implementation of parallel algorithms.
- Principles of parallel algorithm design.
- Modeling of parallel programs.
- Tools such as MPI, pthreads, and OpenMP.
- Some examples.
- Matrix multiplication/inversion.

A Few Questions?

- Do we need parallelism?
- How do you specify and coordinate concurrent tasks?
- What are the pitfalls of parallel programming?
- Are there standards?
- Do you need to accelerate applications?
- Why do you need to think differently?

Trends in Hardware

- Everything points towards parallelism from multi-core, hyper-threading, multi-threads, superscalar, ... technologies.
- Do you know these buzz words?
- Because
- Limits to continue to increment performance with single processors.
- Other constraints like heat, complexity, yields, etc...

Arguments for Parallelism

- Computational power:
- Moore's law.
- Translating transistors into useful OPS.
- Memory/disk speed:
- Performance/yr: CPU +40\%, DRAM $+10 \%$.
- How to feed data?
- What are the problems?
- Design of core i7.
- Parallel platforms: larger aggregate cache+bandwidth+IPC...

