
MVP Assignment 1

Due date: 8/3/2010

1 Question

Exercise 1: Exercise in the book.

Q: Exercise 1, chapter 1.

A: ..

2 Matrix Multiplication

Exercise 2: In this first assignment we will get warmed-up with C and experiment with the
influence of caches on an apparently simple algorithm. The standard formula for computing the
matrix multiplication C = A ∗ B between two matrices of size n ∗ n1 is:

(cij)1≤i,j≤n =
n∑

k=1

aik ∗ bkj

Q: Write down the straight-forward algorithm for computing this formula.

Q: Implement this algorithm in matrix fibo.c. This program serves as a test program to help
you develop and test your function. It is computing Fibonacci numbers using two techniques
and it compares the results for correctness. Keen students are invited to look at the slides
that explain the example (given in the source code). You do not need to look at this to
complete the assignment.
Notes: const means you are not supposed to write the data (see the source code). To
address element (i, j) in a matrix of dimention n declared as int* a, use a[i*dim+j].

�

1

2 void matrix mult(const int ∗ a, const int ∗ b, int ∗ c, size t n)
3 {
4 int i , j , k; /∗ You will need at least these. ∗/
5 assert (a != c && b != c); /∗ Check precondition. ∗/
6

7 /∗ Write here your matrix multiplication . ∗/
8

9 }
�

Listing 1: Matrix multiplication function.

1We stick to square matrices for simplicity here.

1

3 Re-arranged Matrix-Multiplication

Exercise 3: You will test subsequent matrix-multiplication algorithms using another test pro-
gram. It is basically generating a random matrix, inverting it, then it multiplies the original with
its inverse and checks that it is the identity.

Q: Transfer your matrix multiplication implementation to pmatrix.c in the mat mult1 function.

You will need to change the data type to double.

Q: Why is the identity check not using simple equality tests like x == 0 or x == 1.0?

A: ..

Q: Change the PIVOT parameter to 0. Explain the loss in precision. Turn back the parameter
to 1 after that question.

A: ..

Q: What is the memory access pattern of your matrix multiplication implementation?

A: ..

Q: Why is it bad for the cache?

A: ..

Q: Modify your matrix multiplication implementation to make it more cache friendly. This
modification should only concern the memory access pattern. One very simple change in
the loops is enough.

�

1

2 void mat mult2(const int∗ a, const int ∗ b, int ∗ c, size t n)
3 {
4 int i , j , k; /∗ You will need at least these. ∗/
5 assert (a != c && b != c); /∗ Check precondition. ∗/
6

7 /∗ Write here your matrix multiplication . ∗/
8

9 }
�

Listing 2: Matrix multiplication function.

Q: Test your program with sizes 100, 200, . . . 1000 and report the relative improvement com-
pared to the previous version.

A: ..

4 Block-Matrix Multiplication

Exercise 4: We want to improve our implementation to make it more cache friendly. The idea
of the block-matrix multiplication is to compute the multiplication not by element-wise multipli-
cations but by blocks-wise multiplications. Thus the formula becomes:

(Cij)1≤i,j≤n =

n∑

k=1

Aik ∗ Bkj

where Aij , Bij , and Cij are block sub-matrices of respectively A,B, and C. The multiplication be-
tween blocks is the standard element-wise multiplication. We note that thanks to the associativity
of additions this formulation is equivalent to the original algorithm.

Q: What is the point of this reformulation?

A: ..

Q: Write down the corresponding algorithm.

Q: Implement this algorithm. Use the BLOCK parameter to tune the size of the blocks.
�

1

2 void mat mult3(const int∗ a, const int ∗ b, int ∗ c, size t n)
3 {
4 int i , j , k; /∗ You will need at least these. ∗/
5 assert (a != c && b != c); /∗ Check precondition. ∗/
6

7 /∗ Write here your matrix multiplication . ∗/
8

9 }
�

Listing 3: Matrix multiplication function.

Q: Experiment with the BLOCK parameter and find a good value for your machine. Why is it

a good value for your machine?

A: ..

Q: Test your program with sizes 100, 200, . . . 1000 and report the relative improvement com-
pared to the previous version.

A: Exercise 5: [Optional] Micro benchmarks are relatively small benchmark programs whose
purpose is to stress few aspects of a system, here memory. The file bench.c is a simple micro
benchmark test file.

Q: [Optional] Study the file, execute it, and deduce the cache hierarchy of your system from
the output. You should execute it several times to get decent results.

A: ..

5 Authors

I/We have solved these exercises independently, and each of us has actively participated in the
development of all of the exercise solutions.

Name 1 Name 2
. .
Signature Signature

Name 3 Name 4
. .
Signature Signature

Name 5 Name 6
. .
Signature Signature

Name 7 Name 8
. .
Signature Signature

