Graph Algorithms

Alexandre David 1.2.05 adavid@cs.aau.dk

Today

- Recall on graphs.
- Minimum spanning tree (Prim's algorithm).
- Single-source shortest paths (Dijkstra's algorithm).
- All-pair shortest paths (Floyd's algorithm).
- Connected components.

Graphs - Definition

- A graph is a pair (V, E)
- V finite set of vertices.
- E finite set of edges. $e \in E$ is a pair (u, v) of vertices. Ordered pair \rightarrow directed graph. Unordered pair \rightarrow undirected graph.

(a)

$$
\begin{aligned}
& \mathrm{V}= \\
& \mathrm{E}=
\end{aligned}
$$

(b)

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs - Edges

- Directed graph:
- $(u, v) \in E$ is incident from u and incident to v.
- $(u, v) \in E$: vertex v is adjacent to u.
- Undirected graph:
$-(u, v) \in E$ is incident on u and v.
- $(u, v) \in E$: vertices u and v are adjacent to each other.

(a)

(b)

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs - Paths

- A path is a sequence of adjacent vertices.
- Length of a path = number of edges.
- Path from v to $u \Rightarrow u$ is reachable from v.
- Simple path: All vertices are distinct.
- A path is a cycle if its starting and ending vertices are the same.
- Simple cycle: All intermediate vertices are distinct.

Simple path:
Simple cycle:
Non simple cycle:

(a)

Simple path:
Simple cycle:
Non simple cycle:

(b)

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs

- Connected graph: \exists path between any pair.
- $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$ sub-graph of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ if $\mathrm{V}^{\prime} \subseteq \mathrm{V}$ and $\mathrm{E}^{\prime} \subseteq \mathrm{E}$.
- Sub-graph of G induced by V': Take all edges of E connecting vertices of $\mathrm{V}^{\prime} \subseteq \mathrm{V}$.
- Complete graph: Each pair of vertices adjacent.
- Tree: connected acyclic graph.

Sub-graph:

Induced sub-graph:

Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graph Representation

- Sparse graph (|E| much smaller than $|\mathrm{V}|^{2}$):
- Adjacency list representation.
- Dense graph:
- Adjacency matrix.
- For weighted graphs (V,E,w): weighted adjacency list/matrix.

$$
\begin{aligned}
a_{i, j} & =\left\{\begin{array}{l}
1 \\
\text { if }\left(v_{i}, v_{j}\right) \in E \\
0 \\
\text { otherwise }
\end{array}\right. \\
\mathrm{A} & \left.=\stackrel{\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \downarrow}{\mid} \right\rvert\,
\end{aligned}
$$

$$
|\mathrm{V}|^{2} \text { entries }
$$

Figure 10.2 An undirected graph and its adjacency matrix representation.
Undirected graph \Rightarrow symmetric adjacency matrix.

$|\mathrm{V}|+|\mathrm{E}|$ entries

Figure 10.3 An undirected graph and its adjacency list representation.

Minimum Spanning Tree

- We consider undirected graphs.
- Spanning tree of (V,E) = sub-graph
- being a tree and
- containing all vertices V.
- Minimum spanning tree of $(\mathrm{V}, \mathrm{E}, \mathrm{w})=$ spanning tree with minimum weight.
- Example: minimum length of cable to connect a set of computers.

Spanning Trees

Figure 10.4 An undirected graph and its minimum spanning tree.

Prim's Algorithm

- Greedy algorithm:
- Select a vertex.
- Choose a new vertex and edge guaranteed to be in a spanning tree of minimum cost.
- Continue until all vertices are selected.

1. procedure PRIM_MST($V, E, w, r)$
2. begin
3. $V_{T}:=\{r\} ; \quad$ Vertices of minimum spanning tree.
4. $d[r]:=0$;
5. for all $v \in\left(V-V_{T}\right)$ do Weights from V_{T} to V .
6. \quad if edge (r, v) exists set $d[v]:=w(r, v)$;
7. \quad else $\operatorname{set} d[v]:=\infty$;
8. while $V_{T} \neq V$ do
9. begin
10. select find a vertex u such that $d[u]:=\min \left\{d[v] \mid v \in\left(V-V_{T}\right)\right\}$;
11. add $\quad V_{T}:=V_{T} \cup\{u\}$;
12. update for all $v \in\left(V-V_{T}\right)$ do
13. $d[v]:=\min \{d[v], w(u, v)\}$;
14. endwhile
15. end PRIM_MST

Algorithm 10.1 Prim's sequential minimum spanning tree algorithm.
(a) Original graph

a
b
c
d
e
e
$f$$\left[\begin{array}{cccccc}0 & 1 & 3 & \infty & \infty & 3 \\ 1 & 0 & 5 & 1 & \infty & \infty \\ 3 & 5 & 0 & 2 & 1 & \infty \\ \infty & 1 & 2 & 0 & 4 & \infty \\ \infty & \infty & 1 & 4 & 0 & 5 \\ 2 & \infty & \infty & \infty & 5 & 0\end{array}\right]$
(b) After the first edge has been selected

a
b
c
d
e
f
$f$$\left[\begin{array}{cccccc}0 & 1 & 3 & \infty & \infty & 3 \\ 1 & 0 & 5 & 1 & \infty & \infty \\ 3 & 5 & 0 & 2 & 1 & \infty \\ \infty & 1 & 2 & 0 & 4 & \infty \\ \infty & \infty & 1 & 4 & 0 & 5 \\ 2 & \infty & \infty & \infty & 5 & 0\end{array}\right]$
(b) After the first edge has been selected

(c) After the second edge has been selected

$$
\begin{aligned}
& a \\
& b \\
& c \\
& d \\
& d \\
& e \\
& f
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 3 & \infty & \infty & 3 \\
1 & 0 & 5 & 1 & \infty & \infty \\
3 & 5 & 0 & 2 & 1 & \infty \\
\infty & 1 & 2 & 0 & 4 & \infty \\
2 & \infty & 1 & 4 & 0 & 5 \\
2 & \infty & \infty & 5 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& a \\
& b \\
& c \\
& d \\
& d \\
& e \\
& f
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 3 & \infty & \infty & 3 \\
1 & 0 & 5 & 1 & \infty & \infty \\
3 & 5 & 0 & 2 & 1 & \infty \\
\infty & 1 & 2 & 0 & 4 & \infty \\
\infty & \infty & 1 & 4 & 0 & 5 \\
2 & \infty & \infty & \infty & 5 & 0
\end{array}\right]
$$

(c) After the second edge has been selected

(d) Final minimum spanning tree

a
b
c
d
e
$f$$\left[\begin{array}{cccccc}0 & 1 & 3 & \infty & \infty & 3 \\ 1 & 0 & 5 & 1 & \infty & \infty \\ 3 & 5 & 0 & 2 & 1 & \infty \\ \infty & 1 & 2 & 0 & 4 & \infty \\ \infty & \infty & 1 & 4 & 0 & 5 \\ 2 & \infty & \infty & \infty & 5 & 0\end{array}\right]$

a
b
c
d
e
$f$$\left[\begin{array}{cccccc}0 & 1 & 3 & \infty & \infty & 3 \\ 1 & 0 & 5 & 1 & \infty & \infty \\ 3 & 5 & 0 & 2 & 1 & \infty \\ \infty & 1 & 2 & 0 & 4 & \infty \\ \infty & \infty & 1 & 4 & 0 & 5 \\ 2 & \infty & \infty & \infty & 5 & 0\end{array}\right]$

Prim's Algorithm

- Complexity $\Theta\left(n^{2}\right)$.
- Cost of the minimum spanning tree: $\sum_{v \in V} d[v]$
- How to parallelize?
- Iterative algorithm.
- Any d[v] may change after every loop.
- But possible to run each iteration in parallel.

1-D Block Mapping

$d[1 . . n]$

Processors

(a)
p processes n vertices n / p vertices per process
(b)

Parallel Prim's Algorithm

1-D block partitioning: V_{i} per P_{i}. For each iteration:
P_{i} computes a local min $\mathrm{d}_{\mathrm{i}}[\mathrm{u}]$.
All-to-one reduction to P_{0} to compute the global min.
One-to-all broadcast of u.
Local updates of $\mathrm{d}[\mathrm{v}]$.

Every process needs a column of the adjacency matrix to compute the update. $\Theta\left(n^{2} / p\right)$ space per process.

Analysis

- The cost to select the minimum entry is $O(n / p+\log p)$.
- The cost of a broadcast is $O(\log p)$.
- The cost of local update of the d vector is $O(n / p)$.
- The parallel run-time per iteration is $O(n / p+\log p)$.
- The total parallel time (n iterations) is given by $O\left(n^{2} / p+n \log p\right)$.

Analysis

- Efficiency = Speedup/\# of processes: $\mathrm{E}=\mathrm{S} / \mathrm{p}=1 /(1+\Theta((p \log p) / n)$.
- Maximal degree of concurrency $=n$.
- To be cost-optimal we can only use up to $n / \log n$ processes. $\quad \max$ at $n^{2} / p=\theta(n \log p)$,
- Not very scalable. with bound $p=O(n)$

Single-Source Shortest Paths: Dijkstra's Algorithm

- For (V,E,w), find the shortest paths from a vertex to all other vertices.
- Shortest path=minimum weight path.
- Algorithm for directed \& undirected with non negative weights.
- Similar to Prim's algorithm.
- Prim: store d[u] minimum cost edge connecting a vertex of V_{T} to u .
- Dijkstra: store I[u] minimum cost to reach u from s by a path $\mathrm{in}^{2} \mathrm{~V}_{\mathrm{V} \text { versity }}$

Parallel formulation: Same as Prim's algorithm.

1. procedure DIJKSTRA_SINGLE_SOURCE_SP (V, E, w, s)
2. begin
3. $\quad V_{T}:=\{s\}$;
4. for all $v \in\left(V-V_{T}\right)$ do
5.
6.
7.
8.
9.
10.
11.
12.
13. endwhile
14. end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 10.2 Dijkstra's sequential single-source shortest paths algorithm.

All-Pairs Shortest Paths

- For (V,E,w), find the shortest paths between all pairs of vertices.
- Dijkstra's algorithm: Execute the single-source algorithm for n vertices $\rightarrow \Theta\left(n^{3}\right)$.
- Floyd's algorithm.

All-Pairs Shortest Paths Dijkstra - Parallel Formulation

- Source-partitioned formulation: Each prorecs has a cet of vertirec and rompute the Up to n processes. Solve in $\Theta\left(n^{2}\right)$.
- No communication, E=1, but maximal degree of concurrency $=n$. Poor scalability.
- Source-parallel formulation ($\mathrm{p}>\mathrm{n}$):
- Partition the processes (n / n nrocesses/subset), Up to n^{2} processes, $n^{2} / \log n$ for cost-optimal, in which case solve in $\Theta(n \log n)$.
- In parallel: nsingle-source problems.

Floyd's Algorithm

- For any pair of vertices $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}} \in \mathrm{V}$, consider all paths from v_{i} to v_{j} whose intermediate vertices belong to the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$.
- Let $\mathrm{p}_{\mathrm{i}, \mathrm{j}}{ }^{(\mathrm{k})}$ (of weight $\mathrm{d}_{\mathrm{i}, \mathrm{j}}{ }^{(\mathrm{k})}$) be the minimumweight path among them.

Floyd's Algorithm

- If vertex v_{k} is not in the shortest path from v_{i} to v_{j}, then $p_{i, j}{ }^{(k)}=p_{i, j}(k-1)$.

| Floyd's Algorithm

- If v_{k} is in $p_{i, j}{ }^{(k)}$, then we can break $p_{i, j}{ }^{(k)}$ into two paths - one from v_{i} to v_{k} and one from v_{k} to v_{j}. Each of these paths uses vertices from $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}-1}\right\}$.

Floyd's Algorithm

- Recurrence equation:
$d_{i, j}^{(k)}= \begin{cases}w\left(v_{i}, v_{j}\right) & \text { if } k=0 \\ \min \left(d_{i, j}^{(k-1)}, d_{i, k}^{(k-1)}+d_{k, j}^{(k-1)}\right) & \text { if } k \geq 1\end{cases}$
- Length of shortest path from v_{i} to $v_{j}=$ $\mathrm{d}_{\mathrm{i}, \mathrm{j}}{ }^{(\mathrm{n})}$. Solution set = a matrix.

Floyd's Algorithm

How to parallelize?

1. procedure FLOYD_ALL_PAIRS_SP (A)
2. begin
3. $\quad D^{(0)}=A$;
$\Theta\left(n^{3}\right)$
4. \quad for $k:=1$ to n do
5.

$$
\text { for } i:=1 \text { to } n \text { do }
$$

Also works in place.

6. for $j:=1$ to n do
7. $d_{i, j}^{(k)}:=\min \left(d_{i, j}^{(k-1)}, d_{i, k}^{(k-1)}+d_{k, j}^{(k-1)}\right)$;
8. end FLOYD_ALL_PAIRS_SP

Algorithm 10.3 Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs shortest paths of the graph $G=(V, E)$ with adjacency matrix A.

Parallel Formulation

- 2-D block mapping:
- Each of the p processes has a sub-matrix $(\mathrm{n} / \sqrt{ } \mathrm{p})^{2}$ and computes its $\mathrm{D}^{(k)}$.
- Processes need access to the corresponding k row and column of $D^{(k-1)}$.
- $\mathrm{k}^{\text {th }}$ iteration: Each process containing part of the $\mathrm{k}^{\text {th }}$ row sends it to the other processes in the same column. Same for column broadcast on rows.

2-D Mapping

Figure 10.7 (a) Matrix $D^{(k)}$ distributed by 2-D block mapping into $\sqrt{ } \ddot{p} \times \sqrt{ } \ddot{p}$ subblocks, and (b) the subblock of $D^{(k)}$ assigned to process $P_{i, j}$.

Communication

(a)

(b)

Figure 10.8 (a) Communication patterns used in the 2-D block mapping. When computing $d_{i, j}{ }^{(k)}$, information must be sent to the highlighted process from two other processes along the same row and column. (b) The row and column of \sqrt{p} processes that contain the $k^{\text {th }}$ row and column send them along process columns and rows.

Parallel Algorithm

```
1. procedure FLOYD_2 \(\operatorname{DBLOCK}\left(D^{(0)}\right)\)
2. begin
3. for \(k:=1\) to \(n\) do
4. begin
5. each process \(P_{i, j}\) that has a segment of the \(k^{\text {th }}\) row of \(D^{(k-1)}\);
            broadcasts it to the \(P_{*, j}\) processes;
            each process \(P_{i, j}\) that has a segment of the \(k^{\text {th }}\) column of \(D^{(k-1)}\);
                broadcasts it to the \(P_{i, *}\) processes;
            each process waits to receive the needed segments;
            each process \(P_{i, j}\) computes its part of the \(D^{(k)}\) matrix;
    end
end FLOYD_2DBLOCK
```

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. $P_{*, j}$ denotes all the processes in the $j^{\text {th }}$ column, and $P_{i, *}$ denotes all the processes in the $i^{\text {th }}$ row. The matrix $D^{(0)}$ is the adjacency matrix.

Analysis

$$
T_{P}=\overbrace{\Theta\left(\frac{n^{3}}{p}\right)}^{\text {computation }}+\overbrace{\Theta\left(\frac{n^{2}}{\sqrt{p}} \log p\right)}^{\text {communication }}
$$

- $\mathrm{E}=1 /(1+\Theta((\sqrt{ } p \log p) / n)$.
- Cost optimal if up to $\mathrm{O}\left((n / \log n)^{2}\right)$ processes.
- Possible to improve: pipelined 2-D block mapping: No broadcast, send to neighbor. Communication: $\Theta(n)$, up to $O\left(n^{2}\right)$ processes \& cost optimal.

All-Pairs Shortest Paths: Matrix Multiplication Based Algorithm

- Multiplication of the weighted adjacency matrix with itself - except that we replace multiplications by additions, and additions by minimizations.
- The result is a matrix that contains shortest paths of length 2 between any pair of nodes.
- It follows that A^{n} contains all shortest paths.

$$
\begin{aligned}
& A^{1}=\left(\begin{array}{ccccccccc}
0 & 2 & 3 & \infty & \infty & \infty & \infty & \infty & \infty \\
\infty & 0 & \infty & \infty & \infty & 1 & \infty & \infty & \infty \\
\infty & \infty & 0 & 1 & 2 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty & \infty & 2 & \infty & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & 0 & 2 & 3 & 2 \\
\infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\
\infty & 0 & \infty \\
\infty & 1 & 0
\end{array}\right) \\
& A^{2} \\
& A^{4}=\left(\begin{array}{ccccccccc}
0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\
\infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\
\infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\
\infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 \\
\infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\
\infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty \\
\infty & 1 & 0
\end{array}\right) \\
& \text { Serial algorithm not } \\
& \text { optimal but we can } \\
& \text { use } n^{3} / \log n \text { processes } \\
& \text { to run in } O\left(\log ^{2} n\right) \text {. } \\
& \left.\begin{array}{ccccccc}
\infty & \infty & \infty & \infty & 1 & \infty & 0 \\
1 & \infty \\
\infty & \infty & \infty & \infty & \infty & \infty & 0 \\
\infty \\
\infty & \infty & \infty & \infty & \infty & 1 & 0
\end{array}\right) \\
& A^{8}=\left(\begin{array}{ccccccccc}
0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\
\infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\
\infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\
\infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 \\
\infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\
\infty & 0 & \infty \\
\infty & 1 & 0
\end{array}\right)
\end{aligned}
$$

Transitive Closure

- Find out if any two vertices are connected.
- $\mathrm{G}^{*}=\left(\mathrm{V}, \mathrm{E}^{*}\right)$ where $\mathrm{E}^{*}=\left\{\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \mid \exists\right.$ a path from v_{i} to v_{j} in $\left.G\right\}$.

Transitive Closure

- Start with $\mathrm{D}=\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\right.$ or $\left.\infty\right)$.
- Apply one all-pairs shortest paths algorithm.
- Solution:

$$
a_{i, j}^{*}= \begin{cases}\infty & \text { if } d_{i, j}=\infty \\ 1 & \text { if } d_{i, j}>0 \text { or } i=j\end{cases}
$$

