
Assessing the State of the Art

Alexandre David
1.2.05

adavid@cs.aau.dk



07-04-2010 MVP'10 - Aalborg University 2

Important Properties
Correctness

much harder than sequential program
P-independence: Same output on the same input 
regardless of the arrangement of processes.
Try to remove sensitivity to interleavings.
Global view languages – preserve P-independent 
program behavior.
Local view languages – do not preserve it.

Locks, send, receive – local view abstraction.
forall loops, barrier, reduce, scans – global view 
abstraction.



07-04-2010 MVP'10 - Aalborg University 3

Important Properties
Performance

How much is enough?
Little inherent parallelism → low speedup, good 
concurrency → good speedup.
Concurrency → efficiency.
Good locality good for caches, superlinear possible.

Scalability
Effect when number of processors increases?
Compare with size of the problem.

Portability
Performance portability. CTA model.



07-04-2010 MVP'10 - Aalborg University 4

Evaluating POSIX Threads
Powerful & flexible – too much flexible.

Deadlocks, races, uncontrolled memory accesses. 
Any threads can write anything anywhere at any 
time.
Shared address space paradigm does not 
encourage locality – not good for performance.
Locks & condition variables not easy to use, 
against modularity & abstraction

Locks are not composable.
Locking is a global property (correctness + 
performance).



07-04-2010 MVP'10 - Aalborg University 5

Evaluating POSIX Threads
False sharing easy to obtain.
Locking: not possible to hide it, difficult to 
specify in an interface.

Issues with deadlocks & performance.

The argument that it is similar to sequential 
programs encourages programmers to write 
inefficient code.



07-04-2010 MVP'10 - Aalborg University 6

Evaluating Java Threads
Similar to POSIX threads.
Hide some of the complexity.

But with the price of added unspecified behavior 
for threads & volatile memory.



07-04-2010 MVP'10 - Aalborg University 7

Evaluating OpenMP
Global view “language”, clean and simple.
Very easy to use but only simple forms of 
parallelism.



07-04-2010 MVP'10 - Aalborg University 8

Evaluating MPI
Thinner interface than pthreads, more restricted 
communication.
But many low-level details must be specified. Very 
easy to get it wrong.
P-dependent point-to-point communication but 
collective communication operations supported.
Private memory paradigm, encourages locality, but 
efforts needed.
Overhead of message passing encourages coarse 
grained parallelism – good for performance. 
Suitable for static distributions.
Not so portable w.r.t. performance.



07-04-2010 MVP'10 - Aalborg University 9

Evaluating PGAS Languages
(Partitioned Global Address Space)

Improve upon MPI with higher level 
mechanisms for communication.

Global view offered, global data structures.
But retain local view of computations.

ZPL: Good concepts for parallel 
computations, encourages to think differently 
but unfamiliar concepts (regions, flooding…) 
no pointers, limited memory management, 
not object-oriented…



07-04-2010 MVP'10 - Aalborg University 10

Lessons for the Future
Hidden parallelism – largely hidden from 
programmer.
Locality – always important. Some languages 
encourage it.
Constrained parallelism – too much flexibility or 
power is bad – force discipline on programmers.

Flexibility can allow interactions that are difficult to 
reason about – correctness issues.
Flexibility has performance issues if it obscures the 
performance model.
The goal is to make effective use of the available 
resources (locality, limit dependencies, sync,…) not to 
expose maximal parallelism.
Pthreads allows almost anything – compare with other 
approaches.



07-04-2010 MVP'10 - Aalborg University 11

Lessons – cont.
Implicit vs. explicit parallelism.

What’s the right level to expose it?
Ex. GPU: shading routines are customized serial 
code, parallel code is written by the vendor.
Other domain specific languages are very 
efficient.
General vs. domain specific is like explicit 
(+general) vs. implicit (+convenient) parallelism.


