
Introduction to Non-Blocking 
Algorithms

Alexandre David
1.2.05

adavid@cs.aau.dk



29-03-2010 MVP'10 - Aalborg University 2

Concurrent Non-Blocking Algorithms

Concurrent: Several threads can execute the 
algorithms simultaneously.

Blocking algorithms: Algorithms for which processes 
may isolate or block part of the data-structure to 
access it without interference. May cause deadlocks.

Non-blocking algorithms: They ensure that the 
data-structure is always accessible to all processes.
Independent from other halted/delayed processes.



29-03-2010 MVP'10 - Aalborg University 3

Compare and swap (CAS)
Atomic instruction available on most processors.
Most common building block for non-blocking algorithms.
Available in Java
AtomicInteger.compareAndSet(int,int) -> bool

If the memory is equal to some expected value (compare) 
then set the memory to a new value.

Intel:
cmpxchg r/m, r                                      (needs lock prefix)

if eax == r then r/m = r, ZF=0
else eax = r/m, ZF=1



29-03-2010 MVP'10 - Aalborg University 4

Other Atomic Instructions (Intel)

Increment.                                                   
(lock inc r/m)
Decrement.                                                  
(lock dec r/m)
Exchange.                                                    
(xchg r/m, r)
Fetch and add.                                        
(lock xadd r/m, r)
They can be used to implement simple and 
efficient synchronizations primitives.



29-03-2010 MVP'10 - Aalborg University 5

Non-Blocking Algorithms
The key:

Try to compute speculatively.
CAS before committing the result.
Retry if CAS fails.

Good practice:
Work with a state-machine.
Every state must be consistent.
States = committed (intermediate) results.



29-03-2010 MVP'10 - Aalborg University 6

Non-Blocking Counter

proc inc(A)
lock
tmp = A
tmp = tmp+1
A = tmp

unlock
end

Standard blocking
algorithm

proc inc(A)
do
tmp = A

while not CAS(A, tmp, tmp+1)
end

Non-blocking
algorithm



29-03-2010 MVP'10 - Aalborg University 7

Non-Blocking Stack [Treiber’s Algorithm]

proc push(new)
do
old = top
new.next = old

while not CAS(top, old, new)
end

proc pop
do
old = top
return null if old == null
new = old.next

while not CAS(top, old, new)
return old
end

top

push: states

top

top

old

new

top



29-03-2010 MVP'10 - Aalborg University 8

Non-Blocking Stack [Treiber’s Algorithm]

proc push(new)
do
old = top
new.next = old

while not CAS(top, old, new)
end

proc pop
do
old = top
return null if old == null
new = old.next

while not CAS(top, old, new)
return old
end

top

pop: states old

top
old
0

0

0
return

0
return

top
old

top

old

top
old

return Careful with
memory!

new



29-03-2010 MVP'10 - Aalborg University 9

The ABA Problem
Suppose that the value of V is A.
Try a CAS to change A to X.
Another thread can change A to B and back 
to A.
The CAS won’t see it and will succeed.
Usual solution: Add a version number to V.

AV:
exec CAS(V, A, X)

XV:
V=B;…V=A;

call CAS



29-03-2010 MVP'10 - Aalborg University 10

The ABA problem
Some algorithms may suffer from it.
Example: Linked list.

head
pop

head

Expected behavior



29-03-2010 MVP'10 - Aalborg University 11

The ABA problem

pop head headpush

headpush

head
pop

head

lost:



29-03-2010 MVP'10 - Aalborg University 12

Fixes
Reference counter (implicit in Java).

Allocation/de-allocation problems.

Version number.
ABA problems.



29-03-2010 MVP'10 - Aalborg University 13

Insertion in a Queue
[Michael-Scott’s Algorithm]

proc put(new)
do

last = tail
nxt = last.next
if last == tail

if nxt == null
if CAS(last.next, null, new)

CAS(tail, last, new)
break

fi
else

CAS(tail, last, nxt)
fi

fi
loop
end

tail

head dummy

quiescent state

tail

head dummy

tail

head dummy

intermediate state

end state

ABA problem: use tags.


