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i Overview

= One-to-all broadcast & all-to-one reduction
= All-to-all broadcast and reduction

= All-reduce and prefix-sum operations

= Scatter and Gather

= All-to-All Personalized Communication

= Circular Shift

= Improving the Speed of Some
Communication Operations



i Collective Communication Operations

= Represent regular communication patterns.

= Used extensively in most data-parallel
algorithms.

= Critical for efficiency.
= Available in most parallel libraries.

= Very useful to “get started” in parallel
processing.

= Basic model: {,+mt, time for exchanging a
m-word message with cut-through routing.



i Interesting:

= 10 know:

» Data transfer time is roughly the same
between a// pairs of nodes.

= Homogeneity true on modern hardware
(randomized routing, cut-through routing...).
« L+mML,
= Adjust £, for congestion: effective ¢,.

= Model: bidirectional links, single port.

= Communication with point-to-point
primitives.



i Broadcast/Reduction

= One-to-all broadcast:

= Single process sends identical data to all (or
subset of) processes.

= All-to-one reduction:
= Dual operation.

= Pprocesses have m words to send to one
destination.

= Parts of the message need to be combined.



i Broadcast/Reduction

Broadcast Reduce
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iOne-to-AII Broadcast — Ring/Linear Array

= Naive approach: send sequentially.
= Bottleneck.
= Poor utilization of the network.

= Recursive doubling:
= Broadcast in logp steps (instead of p).

= Divide-and-conquer type of algorithm.
= Reduction is similar.



i Recursive Doubling

__________________
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i One-to-All Broadcast — Mesh

= Extensions of the linear array algorithm.
= Rows & columns = arrays.
= Broadcast on a row, broadcast on columns.
= Similar for reductions.
= Generalize for higher dimensions (cubes...).
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i Broadcast on a Mesh
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i One-to-All Broadcast — Hypercube

= Hypercube with 29 nodes = d-dimensional
mesh with 2 nodes in each direction.

= Similar algorithm in d steps.
= Also in logp steps.
= Reduction follows the same pattern.
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i Broadcast on a Hypercube

(10) 3, (1




All-to-One Broadcast
i Balanced Binary Tree

= Processing nodes = leaves.

= Hypercube algorithm maps well.
= Similarly good w.r.t. congestion.
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i Broadcast on a Balanced Binary Tree
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Figure 4.7  One-to-all broadcast on an eight-node tree.
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i Algorithms

= S0 far we saw pictures.
= Not enough to implement.

= Precise description
» to implement.
= to analyze.

= Description for hypercube.

= Execute the following procedure on all the
nodes.
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i Broadcast Algorithm

— 1 downto O do /* Outer loo Qpb
mask XOR 2i- 011 1« QQLic ; QOQ.sk to 0 */

1

g’ur'r'e"n mgns ion 111 /* Setall d bits of mask to 1 */

4.

5

6 then /* If lower i bits of my_id are 0 */
7

8

els

msg_source .

13. endelse;

14. endif;

15. endfor;

16. end ONE_TO_ALL_BC




Broadcast Algorithm

XN R =

—_ e e = = = = \O
SNk WD = O

procedure ONE_TO_ALL_BC(d, my_id, X)
begin

mask =29 — 1; /* Set all d bits of mask to 1 */
fori :=d — 1 downto O do /* Outer loo Q%)
ko= ' 7+ QQ it ; BOQsk t0 0 */

hen

else
msg_source

my_id XOR

endelse
endif;
endfor;
end ONE_TO_ALL_BC

hen /* If lower i bits of my_id are 0 */

111

101

Qoo 001
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Broadcast Algorithm

XN R =

—_ e e = = = = \O
SNk WD = O

procedure ONE_TO_ALL_BC(d, my_id, X)

begin
mask =29 — 1; /* Set all d bits of mask to 1 */
fori :=d — 1 downto O do /* Outer loo
o= ' /% Set bit i QPQQM t0 0 */

hen /* If lower i bits of my_id are 0 */
en

> 111

else

msg_source .= my_id XOR

endelse
endif;

endfor;
end ONE_TO_ALL_BC




i Algorithm For Any Source

14.
15.
16.

procedure GENERAL_ONE_TO_ALL_BC(d, my_id, source, X)
besi

mask =29 — 1;
fori :=d — 1 downto O do  /* Outer loop */

mask :
if (

mask XOR 2';  /* Set bit i of mask to 0 */

virtual .d
send X to
/* Convert virtual_dest to the label of the physical destination */
else
virtual _source = my_virtual _id XOR 2/;
receive X fro
/* Convert virtual_source to the label of the physical source */
endelse;
endfor;
end GENERAL_ONE_TO_ALL_BC
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4 Reduce Algorithm

Al S e

% N o

\O

11.
12.
13.
14.
15.
16.
17.
18.

procedure ALL_TO_ONE_REDUCE(d, my_d, m, X, sum)

begin
for j :=0tom — 1 do suml|j] := X[/
mask = 0;

fori :=0tod — 1 do
/* Select nodes whose lower i bits are O */
if (imy_id AND mask) = 0 then
if (my_id AND 2") # 0 then
msg_destination := my_id XOR 2':

In a nutshell:
reverse the previous one.

TeCeIve X ITOM /1ISZ SOUTCe,
for j :=0tom — 1 do
sum|[j] :=sum[j]+ X[/];
endelse;
mask := mask XOR 2'; /* Set bit i of maskto 1 */
endfor;
end ALL_TO_ONE_REDUCE
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i Cost Analysis

p processes — logp steps (point-to-point
transfers in parallel).

Each transfer has a time cost of
f.+1,m.
Total time: 7=(t,+7,m)logp.
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i All-to-All Broadcast and Reduction

= Generalization of broadcast:
« Each processor is a source and destination.

= Several processes broadcast different
messages.

= Used in matrix multiplication (and matrix-
vector multiplication).

= Dual: all-to-all reduction.
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i All-to-All Broadcast and Reduction

All-to-all broadcast

, M M
@ @ . All-to-all reduction @j} Qj) Lo

Figure 4.8 All-to-all broadcast and all-to-all reduction.
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i All-to-All Broadcast — Rings
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i All-to-All Broadcast Algorithm

© N oLk W —

— e \O
D= o

procedure ALL_TO_ALL_BC_RING(my_d, my_msg, p, result)
begin )
left :== (my_id — 1) mod p; ng: mod P.
right == (my-id + 1) mod p: Receive & send - point-to-point.
result :== my_msg; L
wisE = resiils Initialize the loop.
fori :=1top—1do
send msg to right,

L Forward msg.

- Accumulate result.

lefi:

en ;
end ALL_TO_ALL_BC_RING

Algorithm 4.4  All-to-all broadcast on a p-node ring.
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i All-to-All Reduce Algorithm

O NNk =

—_— = = = \D
W = O

procedure ALL_TO_ALL_RED_RING(my_id, my_msg, p, result)
begin
left :== (my_id — 1) mod p;
right .= (my_id + 1) mod p;
recv = ();
fori :=1top—1do
J = (myid-Fiimod p

wemp = msal ] +recv: ACcumulate and forward.

send femp to left;
receive recv from right,
endfor;

result := msg[my_id] + recv; | ast message for my. /a
end ALL_TO_ALL_RED_RING _

Algorithm 4.5  All-to-all reduction on a p-node ring.
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i All-to-All Reduce — Rings
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i All-to-All Reduce — Rings
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i All-to-All Broadcast — Meshes

= TWO phases:
= All-to-all on rows — messages size m.
= Collect sgrt(p) messages.
= All-to-all on columns — messages size

sgrt(p)*m.
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i All-to-All Broadcast — Meshes
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Algorithm

26+29-03-20

1.
2.

procedure ALL_TO_ALL_BC_MESH(my_id, my_msg, p, result)
begin

/:
3
4
5.
6.
.
8
9
1

1

0.
1.

* Communication along rows */

left :=my_id — (my_id mod \/p) + (my_id — 1)mod/p;
right == my_id — (my_id mod /p) + (my_id + 1) mod ,/p;
result == my_msg:
msg .= result,
fori:=1to /p—1do

send msg to right,

receive msg from left;

result .= result U msg;
endfor;

/** Communication along columns */

12.
13.
14.
15.
16.
17.
18.
19.
20.

up = (my_id — ./p) mod p;
down = (my_id + /p) mod p;
msg = resullt,
fori:=1to ./p—1do

send msg to down;

receive msg from up;

resull .= result U msg;
endfor;

end ALL_TO_ALL_BC_MESH
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i All-to-All Broadcast - Hypercubes

= Generalization of the mesh algorithm to
logp dimensions.

= Message size doubles at every step.
= Number of steps: logp.

33



All-to-All Broadcast — Hypercubes

(6,7) (6.7)

(¢) Distribution before the third step (d) Final distribution of messages
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i Algorithm

procedure ALL_TO_ALL_BC_HCUBE(my_id, my_msg, d, result)
begin

result ;== my_msg;

fori ;== 0tod — 1 do Loop on the dimensions

partner :=my_id XOR 27;
send result to partner, Exchange messages

receive msg from pariner,
result := result U msg; Forward (double SiZZ)
endfor;
0. end ALL_.TO_ALL_BC_HCUBE

=L XN =

Algorithm 4.7  All-to-all broadcast on a d-dimensional hypercube.



JAll-to-All Reduction — Hypercubes

P NN R =

\O

.

10.
11.
12.
13.
14.
15.
16.
17.

procedure ALL_TO_ALL_RED_HCUBE(my_id, msg, d, result)

begin

recloc :=0);

fori :=d—1to0do
partner = my_id XOR 2;
j:=my_id AND 2/;
k :=(my_id XOR 2') AND 2/;
senloc := recloc + k;
recloc .= recloc + j;

Similar pattern
In reverse order.

send msg|senloc .. senloc +2' — 1] to partner,

receive femp[0 .. 2’ — 1] from partner;
for j :=0to2 — 1 do

msglrecloc + j|:= msglrecloc + j1+ temp[/]; Combine results

endfor;
endfor;
result :== msg[my _id],
end ALL_.TO_ALL_RED_HCUBE

Algorithm 4.8 AII-to-aIn a d-dimensional hypercube. AND and XOR are bitwise
logical-and and exclusive-or operations, respectively.
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i Cost Analysis (Time)

= Ring:
« 7=(t 4 L, m)(p-1).
= Mesh:

« T=(t, + t,m)Ap-1)+(t. + t,mp) Np-1)
s

= Hypercube:

26+29-03-2010

logp

T = (ts + 2 1tum)
; logp steps

message of size 2-/m.
=tslogp Hiy,m(p — 1).

MVP'10 - Aalborg University
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i Dense to Sparser: Congestion

R L L L Rl
d\<”_F_"-"”;':::::::”H:ﬁ : Contention for a single
7 1 1 channel by multiple
' | | messages
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Figure 4.12 Contention for a channel when the communication step of Figure 4.11(c) for the hy-
percube is mapped onto a ring.
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i All-Reduce

= Each node starts with a buffer of size m.
= | he final result is the same combination of

all buffers on every node.

= Same as all-to-one reduce + one-to-all

broadcast.

s Different from all-to-all reduce.

O O O O

O O O O
2 3 4 a 1234

1234

1234

1234
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i All-Reduce Algorithm

= Use all-to-all broadcast but

= Combine messages instead of concatenating
them.

= The size of the messages does not grow.
= Cost (in logp steps): T=(t.+t,/m) logp.
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i Prefix-Sum

= Given p numbers 7,n,,...,1, ; (One on each
node), the problem is to compute the sums
s, = 2%_,n;forall kbetween 0 and p-1.

= Initially, 2, is on the node labeled 4, and at
the end, the same node holds 5,.

41



i Prefix-Sum Algorithm

e A ol

—_ = = \D
D = O

procedure PREFIX_SUMS_HCUBE(my_id, my_number, d, result)
begin

result == my_number;

msg = result;

fori :=0tod — 1 do

partner := my_id XOR 27;

send msg to partner,
receive number from partner:;
msg = msg + number;

All-reduce

end PREFIX_SUMS_HCUBE

Algorithm 4.9  Prefix sums on a 4-dimensional hypercube.
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i Prefix-Sum

Buffer = all-reduce sum
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i Scatter and Gather

= Scatter: A node sends a unique message to
every other node — unigue per node.

= Gather: Dual operation but the target node
does not combine the messages into one.
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i Cost Analysis

= Number of steps: logp.

= Size transferred: pm/2, pm/4,...,m.
= Geometric sum 1

1—
p+£+£+...+£: p 211

2 4 22 "1
2

1 1
Pl P oopa-—o)- p=2p(1—2—p)— p=p-1

2 4 2n 2n+1
(2n+1 _ 21+Iogp _ 2 p)
s Cost 7=tlogp+t,m(p-1).
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i All-to-All Personalized Communication

= Each node sends a distinct message to
every other node.

MOO ______________________________ > EMo,oé IV|01 Moz
© © @
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Example: Transpose

Figure 4.17 All-to-all personalized communication in transposing a 4 x 4 matrix using four pro-
Cesses.
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i Total Exchange on a Ring
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i Total Exchange on a Ring
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i Cost Analysis

= Number of steps: p-1.
= Size transmitted: m(p-1),m(p-2)...,m.

p—1
T =t (p-D+> it,m=(t, +t,mp/2)(p-1)
=1

Optimal
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i Optimal?

= Check the lowest bound for communication
and compare to the one we have.
= Average distance a packet travels = p/2.

= There are p nodes that need to transmit m(p-1)
words

« Total traffic = m(p-1)*p/2*p.

= Number of link that support the load = p, so
communication time = t, m(p-1)p/2.
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i Total Exchange on a Mesh
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i Total Exchange on a Mesh
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i Total Exchange on a Mesh
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i Cost Analysis

= Substitute p by v (number of nodes per
dimension).

= Substitute message size m by mvp.
= Cost is the same for each dimension.

. T=(2t+t,mp)(VP-1)
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i Total Exchange on a Hypercube

= Generalize the mesh algorithm to logp steps
= number of dimensions, with 2 nodes per
dimension.

= Same procedure as all-to-all broadcast.
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Cost Analysis

= Number of steps: logp.
= Size transmitted per step: pm/2.

s Cost: 7=(t.+t, mp/2) logp.

= Optimal? | NO

= Each node sends and receives m(p-1)
words. Average distance = (logp)/2. Total
traffic = p*m(p-1)*logp/2.

= Number of links = plogp/2.

= Time lower bound = t,m(p-1).
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i An Optimal Algorithm

= Have every pair of hodes communicate
directly with each other — p-1
communication steps — but without
congestion.

= At /7 step node /communicates with node
(7 xor j) with E-cube routing.
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube

4
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Total Exchange on a Hypercube
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i Cost Analysis

= Remark: Transmit less, only what is
needed, but more steps.

= Number of steps: p-1.
= [ransmission: size m per step.
m Cost: 7=

= Compared with 7- -

= Previous algorithm better for small
messages.
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i Circular Shift

= It's a particular permutation.

= Circular g-shift: Node /sends data to node
(/+g) mod p (in a set of p nodes).

= Useful in some matrix operations and
pattern matching.

= Ring: intuitive algorithm in min{q,p-q}
neighbor to neighbor communication steps.
Why?
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Circular 5-shift

onh a mesh.

q mod Vp on rows
compensate
g/ Vplon colums
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i Circular Shift on a Hypercube

= Map a linear array with 27 nodes onto a
hypercube of dimension d.

= EXpand g shift as a sum of powers of 2 (e.g.
5-shift = 20+22).
= Perform the decomposed shifts.

= Use bi-directional links for “forward” (shift
itself) and “backward” (rotation part)... logp
steps.
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Or better:
Direct
E-cube routing.
g-shifts on a
8-node
hypercube.

26+29-03-2010

(d) 4-shift

(g) 7-shift
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i Improving Performance

= SO far messages of size m were not spilit.

= If we split them into p parts:

= One-to-all broadcast = scatter + all-to-all
broadcast of messages of size my/p.

= All-to-one reduction = all-to-all reduce + gather
of messages of size my/p.

= All-reduce = all-to-all reduction + all-to-all
broadcast of messages of size my/p.
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