
ZPL and Other Global View
Languages

Alexandre David
1.2.05

adavid@cs.aau.dk

22-03-2010 MVP'10 - Aalborg University 2

Introduction
So far:

libraries in C for threads & message passing
only libraries, same base language, no syntactic
support for parallelism (omp special)

High-level parallel language
see the whole computation
implicit parallelism
ZPL is one example, interesting for the benefits
at the concept level

22-03-2010 MVP'10 - Aalborg University 3

ZPL
Focus on arrays & their manipulations.
Provides implicit parallelism.

Generated threads, communication, sync.

Goal: parallelism & parallel performance,
including the communication cost, without
low-level code.
Example:
[1..n] count:=+<<(array==3);

22-03-2010 MVP'10 - Aalborg University 4

Basics
Array language – arrays as units.

A+=1; – updates done logically in parallel.

Regions: computations on partial arrays
[1..n] A+=1;
[1..n/2] A+=1;
Several dimensions possible, e.g., [1..8, 1..8]
Implicit reference of sub-arrays
[1..m, 1..m] E:=1/B;
works if B “larger” array than E.

22-03-2010 MVP'10 - Aalborg University 5

Regions
Limit case: one element.

[x,y] D:=sqrt(2);
Used to declare sizes of arrays.

var B, C : [1..m,1..n] float;
Named regions.

region R=[1..m,1..n];
var B,C : [R] float;
[R] B:=2*C+D;

Scope: next statement or block of
statements.

22-03-2010 MVP'10 - Aalborg University 6

Primitive Types

Lesson: Specialized types for numerical computations.

22-03-2010 MVP'10 - Aalborg University 7

Control-Flow Statements

22-03-2010 MVP'10 - Aalborg University 8

Array Computation
Operators applied element-wise on
corresponding elements of the arrays.
[R] TW:=(TW & NN=2) | (NN=3);
Operators different than the ones in C.

Lesson: High-level operators suited for
parallelism.

22-03-2010 MVP'10 - Aalborg University 9

Operators

22-03-2010 MVP'10 - Aalborg University 10

@-translation
Shift indices on operations – otherwise very
boring operations only.

direction left=[-1]; right=[1];
declares directions for references
[2..n-1] A:=(A+A@left+A@right)/3;
translates the indices according to the directions.
Example:
direction nw=[-1,-1]; no=[-1,0]; ne[-1,1]; …
TW@nw+TW@no+TW@ne+TW@we... gives the
number of neighbors relative to TW current
element.

22-03-2010 MVP'10 - Aalborg University 11

Reduce
op<<A with an associative & commutative
operator.

[2..n-1] total=+<<A;
[R] biggest := max<<B;
[R] span:=(max<<A)-(min<<A)+1;

Lesson: Provide useful high-level operators in
a way that can be exploited for parallelism.

22-03-2010 MVP'10 - Aalborg University 12

Conway’s Game of Life
Start with an initial configuration =
generation 0.
Rules between every generation:

An organism survives if it has 2 or 3 neighbors.
An organism is born at a free position if it has 3
neighbors.
All other organisms die.

Coding: The world array TW, use @-
translation to read neighbors.

22-03-2010 MVP'10 - Aalborg University 13

Conway’s Game of Life

No race condition
problem.

Arrays declared
logically but the
compiler does not
have to really
create them.

22-03-2010 MVP'10 - Aalborg University 14

Lessons
Simple problem, simple program.
Concise & clear.

Manipulate entire arrays at the same time.
Regions and directions.
Implicit parallelism comes from array operations.

22-03-2010 MVP'10 - Aalborg University 15

Distinguishing Features
compared to other array languages

Regions and @ operator.
Restrictions to enforce programming discipline &
distinguish expensive operations.

No transpose possible with only regions & @.
Cost distinction between transpose & copy.

Note: typos in transpose example.

Removal of very general operators with non
defined costs.
Restriction on ranks of arrays.

22-03-2010 MVP'10 - Aalborg University 16

Manipulating Arrays of Different Ranks

Regions define dimensions, number of
elements, the indices, and the allocation.
Operators between arrays of the same ranks.

Use larger rank if mismatch (with collapsed
dimensions).
Replicate elements – flood operator.
Elements are logically replicated but not
necessarily really copied.

22-03-2010 MVP'10 - Aalborg University 17

Partial Reduce
Partial reduce on some dimensions.

with regions.
Example: [1,1..n] C:=+<< [1..m, 1..n] B;

Example: [1..m, 1] D:=*<< [1..m, 1..n] B;

Example: [1,1,1..n] G:= max <<
[1,1..m,1..n] (min<<[1..p,1..m,1..n F);
Lesson: high-level parallelizable operators.

m

n

m

n

22-03-2010 MVP'10 - Aalborg University 18

Flooding
Way to expand dimensions.
Inverse of partial reduce.

[1..m,1..n] B:=>>[1,1..n] C;
[1..m,1..n] C:=>>[1..m,1] D;
Fills the missing dimension by copies.

Principle:
Element-wise operators need the same
dimensions.
Logical copies.

22-03-2010 MVP'10 - Aalborg University 19

Matrix Multiplication
Usual sequential language:
for(i=0; i<m; i++)

for(j=0; j<p; j++) {
C[i,j]=0;
for(k=0; k<n; k++)

C[i,j] += A[i,k]*B[k,j];
}

Simple but not suited for parallel product.

C[m*p]=A[m*n]*B[n*p]

22-03-2010 MVP'10 - Aalborg University 20

Matrix Multiplication
Considering parallel element-wise
multiplications, we can flood the input
matrices, do the multiplications, and
accumulate.

3,33,12,23,13,11,13,1

2,33,12,22,12,11,12,1

1,33,11,22,11,11,11,1

1,33,31,22,31,11,31,3

1,33,21,22,21,11,21,2

1,33,11,22,11,11,11,1

BABABAC
BABABAC

BABABAC
BABABAC
BABABAC

BABABAC

++=

++=

++=

++=

++=

++=

22-03-2010 MVP'10 - Aalborg University 21

ZPL Matrix Multiplication

22-03-2010 MVP'10 - Aalborg University 22

Reordering Data
Explicit communication cost.
Index arrays

predefined arrays Index1, Index2, …
(indices on i dimension flooded on the others)
Use: [1..n,1..n] Diag:=Index1=Index2;

Remap operator (#)
gather: B=A#[P]; -- pick elements of A in order defined
by indices in P
scatter: C#[P]=A; -- reverse
Ex: [1..n, 1..m] Btransp:=B#[Index2,Index1];
Lesson: higher-order operators available

22-03-2010 MVP'10 - Aalborg University 23

Parallel Execution of ZPL
Based on the array language features.
The compiler generates loop nests, adds
communication, reduce, …
Optimizations

combine loop nests – reduce memory
combine communication – reduce interaction
overlap communication & computation
efficient flood arrays
efficient index arrays

Lesson: Force to think using certain language
constructs that exhibit parallelism. The compiler
does the rest.

22-03-2010 MVP'10 - Aalborg University 24

Performance Model

Cost model with the language.
Easy to identify costs.

22-03-2010 MVP'10 - Aalborg University 25

Communication Cost
@: λ delay
Local computation
Reduce: 2λ log P

22-03-2010 MVP'10 - Aalborg University 26

Communication Cost
SUMMA:
[1..m, 1..p] begin

C:=0;
for k:=1 to n do

C+=(>>[1..m,k] A) * (>>[k,1..p] B);
end;

end;
C=0: perfectly parallel
(√p*√p grid) flood: λlog P/2

22-03-2010 MVP'10 - Aalborg University 27

Other Language
NESL – functional language

has a complexity model – work & depth
main feature: apply-to-each operation.

Lessons
High-level (restricted) constructs
Force to use these constructs and exhibit
parallelism
Cost/complexity model to reason about
performance

