Reasoning about Performance

Alexandre David 1.2.05 adavid@cs.aau.dk

Basics

- A sequential algorithm is evaluated by its runtime in function of its input size.
 O(f(n)), Ω(f(n)), Θ(f(n)).
- The asymptotic runtime is independent of the platform. Analysis "at a constant factor".
- A parallel algorithm has more parameters.

Basics

- A parallel algorithm is evaluated by its runtime in function of
 - the input size,
 - the number of processors,
 - the communication parameters.
- Which performance measures?
- Compare to which (serial version) baseline?

Sources of Performance Loss

- In practice, E<1.</p>
 - Overhead (sync, communication, threads).
 - W_S Amdahl's law.
 - Idling & contention.
 - Overhead function: $T_0 = pT_P T_S$
- Ex. count3s:
 - false sharing (communication) was avoidable
 - at the cost of memory
 - incrementing global counter unavoidable

Example – Amdahl's Law

Assume 20% not parallelizable.

$$T_2 = T_S/2 + 0.2T_S = 0.7T_S$$

S=1/0.7
E₂=S/2=0.71

$$T_{10}=T_S/10+0.2T_S=0.3T_S$$

S=1/0.3
E₂=S/10=0.33

Overheads

- Communication overheads
 - explicit (send/recv) + implicit (threads, false sharing...)
- Synchronization
 - Iocks, barriers, semaphores
- Extra computations
 - typically reductions
- Memory
 - extra padding, local copies

Scalability

As seen in Amdahl's law:

- Speedup inherently limited by the problem size.
- Increase p, lose speedup.
- Increase the size, gain speedup in general W_S grows slowly with the size.

The question is:

- How much do you need to increase the size in function of p to keep the same efficiency?
- Measured by isoefficiency function
 measure of scalability.

Scalability

- Suppose $T_s = cn^x$.
- We increase the problem size by m and we use p processors. But we want to keep the same execution time.
 - c(mn)^x/p=cn^x optimistic.
 p=m^x
 m=p^{1/x}.
 - x=4, m=100, we need 10⁸ processors.
 - Example in the book is miss-leading: The problem comes from the complexity of the algorithm.

Contention

- Special because not seen directly in the code.
- Comes for behavior.
- Difficult to replicate.
- Sources:
 - excessive loads on memory, e.g., spin-lock
 - central locks granularity problems
 - effects on the architecture flood the bus

Idling

- Waiting for locks.
- Data dependencies.
 - See previous examples (sum, prefix).
 - May need algorithm rewrites.
- Load balancing.
- Memory bound computations locality.
- Detecting termination!

Parallel Structure

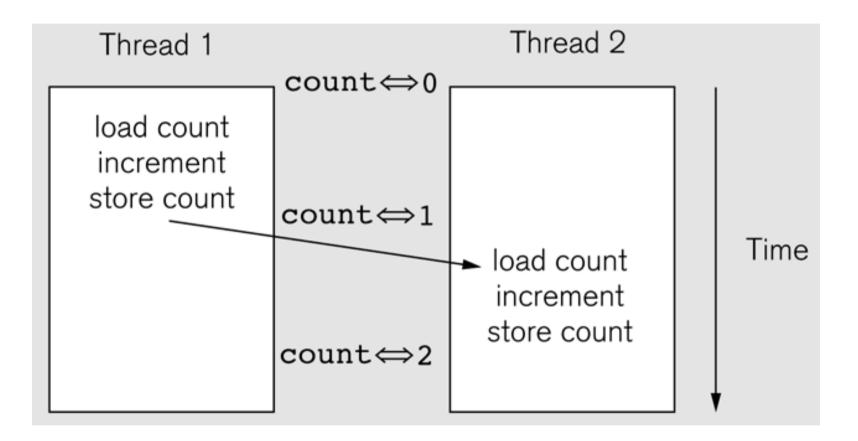
- Identify dependencies
 - task dependency graph
 - data dependencies
 flow dependency: read after write true dep.
 anti-dependency: write after read
 memory output dependency: write after write
 reuse

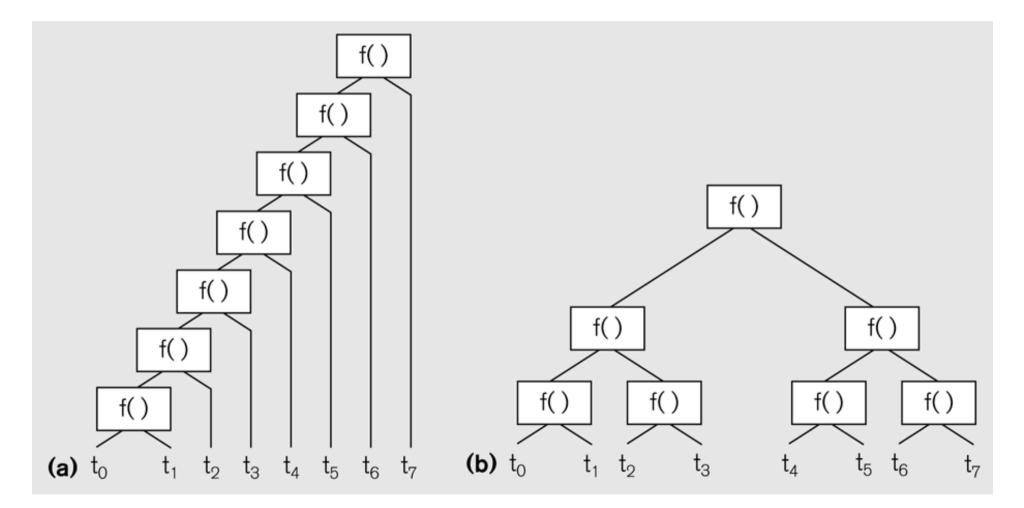
Example

- Flow dependency.
 - Cannot be removed.
- Anti-dependency.
 - Can be removed by renaming/rewriting.

```
sum=a+1;
first=sum*scale1;
sum=b+1;
second=sum*scale2;
```

```
first=(a+1)*scale1;
second=(b+1)*scale2;
```



Granularity

- Size of
 - tasks
 - data associated to threads
 - \rightarrow determines frequency of interactions.
- Fine grain: small independent computations/small data sets → frequent interactions.
 - Multi-core hardware support, low latency.
- Coarse grain: large independent computations/large data sets → infrequent interactions.
 - MPI high latency.
- Opposite to load balancing goals.

Locality

- Temporal locality.
- Spatial locality.
- Use cache/paging efficiently.
 - Even more important for parallel programs.
- Locality effect: Reduce dependencies.

Trade-offs

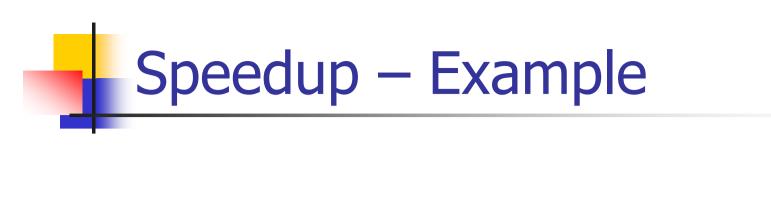
- Identify the 10% code taking 90% time.
 - Not enough for parallel programs but still useful.
- Computation vs. Communication
 - Overlap com. & comp. trylocks, async I/O.
 - Redundant comp. recompute (cheaper than communication).
 - Reduces dependencies & sync. costs.
- Memory vs. Parallelism
 - private memory copy improve locality
 - padding avoid false sharing

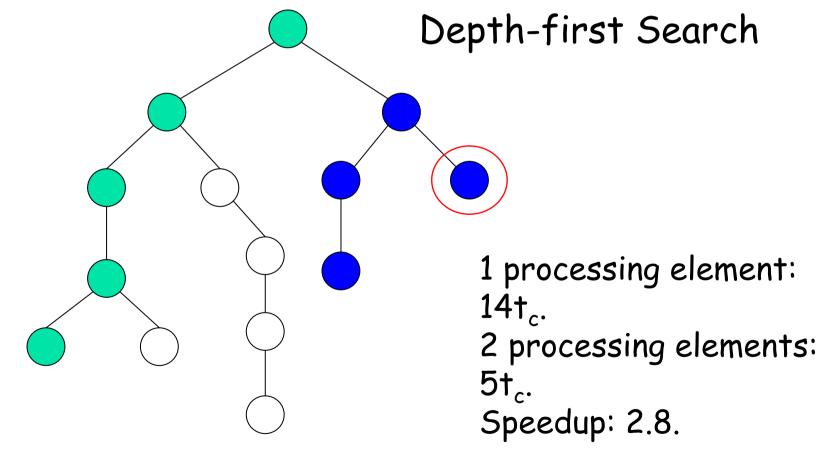
Trade-offs

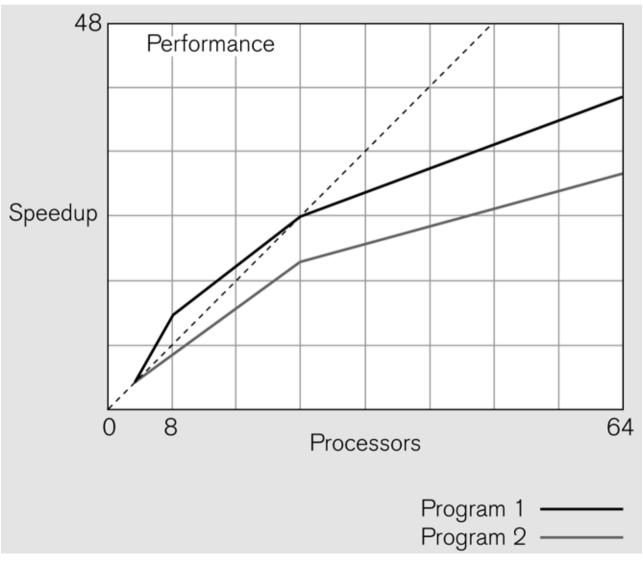
- High parallelism vs. overhead
 - need to combine/reduce results eventually
 - Ioad balance communication
 - granularity batching is useful for communication but may result in idling

Measuring Performance

- Execution time, FLOPS limited.
- Speedup, efficiency useful.
 - Superlinear speedup: either performance anomalies (different work) or increased locality (caches) that overcomes overheads.
 Theoretically S≤p.
 - Speedup may vary over different machines.
 - True vs. relative speedup.
 - Cold starts cache/page issues.
 - I/O activities.



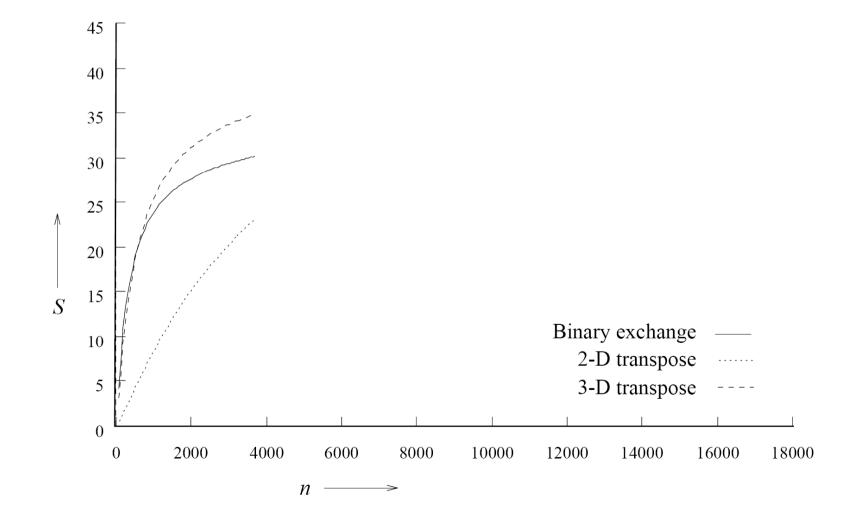




Scalability of Parallel Systems

- In practice: Develop and test on small systems with small problems.
- Problem: What happens for the real large problems on large systems?
 - Difficult to extrapolate results.

Problem with Extrapolation



Rewrite efficiency (E):

$$\begin{cases} E = \frac{S}{p} = \frac{T_S}{pT_p} \Longrightarrow E = \frac{1}{1 + \frac{T_0}{T_S}} \\ pT_p = T_0 + T_S \end{cases}$$
 What does it tell us?

Note: $T_0 = f(p)$ increasing.

Scalable Parallel System

- Can maintain its efficiency constant when increasing the number of processors and the size of the problem.
- In many cases T₀=f(T_Sp) and grows sublinearly with T_S. It can be possible to increase p and T_S and keep E constant.
- Scalability measures the ability to increase speedup in function of *p*.

Cost-Optimality

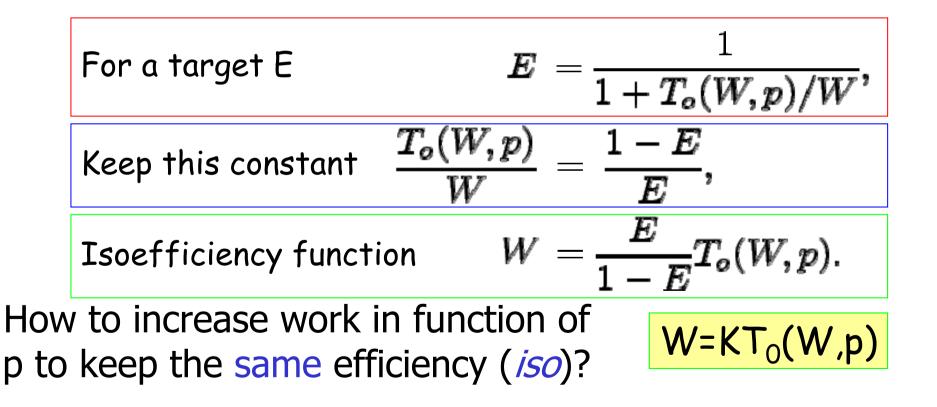
- Cost optimal parallel systems have efficiency Θ(1).
- Scalability and cost-optimality are linked.
- Adding number example: becomes costoptimal when n=Ω(p logp).

Scalable System

- Efficiency can be kept constant when
 - the number of processors increases and
 - the problem size increases.
- At which rate the problem size should increase with the number of processors?
 - The rate determines the degree of scalability.
- In complexity, problem size = size of the input. Here = number of basic operations to solve the problem. Noted W ($\sim T_s$).

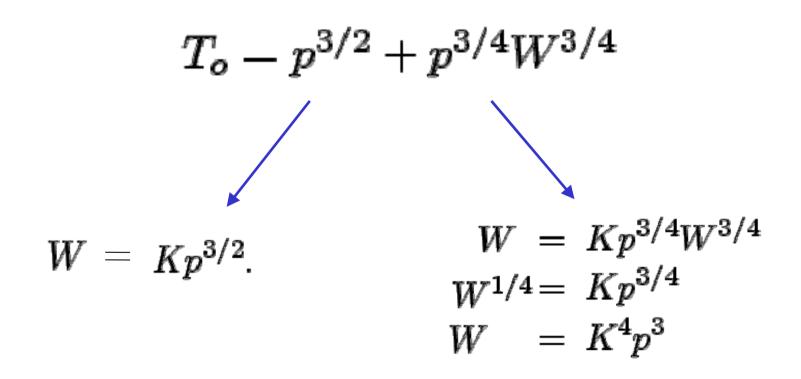
Isoefficiency Function

For scalable systems efficiency can be kept constant if T₀/W is kept constant.



Example

- Adding number: We saw that $T_0 = 2p \log p$.
- We get $W = K 2p \log p$.
- If we increase p to p', the problem size must be increased by (p'logp')/(p logp) to keep the same efficiency.
 - Increase p by p//p.
 - Increase n by (p'logp')/(p logp).



Isoefficiency = $\Theta(p^3)$.

 After isoefficiency analysis, we can test our parallel program with few processors and then predict what will happen for larger systems.

A parallel system is cost-optimal iff $pT_P = \Theta(W)$.

$$W + T_o(W, p) = \Theta(W)$$
$$T_o(W, p) = O(W)$$
$$W = \Omega(T_o(W, p))$$

A parallel system is cost-optimal iff its overhead (T_0) does not exceed (asymptotically) the problem size.

Minimum Execution Time

- If $T_P \searrow$ in function of p, we want its minimum. Find p_0 s.t. $dT_P/dp=0$.
- Adding *n* numbers: $T_p = n/p + 2 \log p$.

$$\rightarrow p_0 = n/2.$$

 $\rightarrow T_P^{min} = 2 \log n$

Fastest but not necessary cost-optimal.

Table 5.2 Comparison of four different algorithms for sorting a given list of numbers. The table shows number of processing elements, parallel runtime, speedup, efficiency and the pT_P product.

Algorithm	A1	A2	A3	A4
р	n^2	log n	п	\sqrt{n}
T_P	1	п	\sqrt{n}	$\sqrt{n}\log n$
S	$n\log n$	$\log n$	$\sqrt{n}\log n$	\sqrt{n}
E	$\frac{\log n}{n}$	1	$\frac{\log n}{\sqrt{n}}$	1
pT_P	n^2	$n\log n$	<i>n</i> ^{1.5}	$n\log n$
	p T_P S E	$T_P = 1$ $S = n \log n$ $E = \frac{\log n}{n}$	$p \qquad n^2 \qquad \log n$ $T_P \qquad 1 \qquad n$ $S \qquad n \log n \qquad \log n$ $E \qquad \frac{\log n}{n} \qquad 1$	$p \qquad n^2 \qquad \log n \qquad n$ $T_P \qquad 1 \qquad n \qquad \sqrt{n}$ $S \qquad n \log n \qquad \log n \qquad \sqrt{n} \log n$ $E \qquad \frac{\log n}{n} \qquad 1 \qquad \frac{\log n}{\sqrt{n}}$

Β

Other Scalability Metrics

- Scaled speedup: speedup when problem size increases linearly in function of p.
 - Motivation: constraints such as memory linear in function of p.
 - Time and memory constrained.