1st Steps Toward Parallel

!'_ Programming

Alexandre David
1.2.05
adavid@cs.aau.dk

i Data and Task Parallelism

= Do we parallelize the data or the code?

=« Data parallelism: same operation to different
data items at the same time. Parallelism grows
with data.
E.g. on GPUs.

= Task parallelism: do different tasks at the same
time. Number of tasks may be fixed and not
scalable.
E.g. pipelines.

i Peril-L Notation

= Pseudo-code for parallelism.
= Simplified notation for describing algorithms
= easy to go from pseudo-code to a programming
language
= conceptually complete and unambiguous (for us)
= possible to reason about performance
= here for parallelism
= execute on a CTA — locality awareness
= C look & feel

« Important: Not Peril-L notation itself but the
concepts that go with it.

i Parallel Threads

forall(<integer variable> in (xindex range>))

{
}

= Conceptually
= Consider an unordered set of indices (range specified).
= Execute the code over that set.

= Parallelism:
=« The index range = a set S of indices.

= A Jogicalthread per index of S executes the code with
that index value.

= NoO order is enforced.
= Synchronization is not specified.

<body>

i Synchronization

= If you do not enforce order between threads
there will be no order.

= Corollary: Threads are evil, if they can behave in
a bad way, they will.

= Mutual exclusion: exclusive { <body> }
= Barrier synchronization: barrier

forall(index in (1..12))
{
printf(“tweedle dee\n");
barrier;
! printf("tweedle dum\n");
voooY T }
IR N

12-02-2010 MVP'10 - Aalborg University

i Memory Model

= Local variables distinguished from global
variables.

= Locality is defined by scope.
= Global variables are underlined.
= Be careful to concurrent writes.

int data[n];
forall(index in (0..n-1))
{
if (data[index]<0) OK
{
data[index]++;
}
}

i Global -> Local Memory

= Recall: CTA has no global memory.
= Structures are distributed.
= We need a way to map to local memory.
= localize makes the mapping.

et el to ealata

forall(t in (O..p-1 .

{ ((©-p-1)) Accesses to allData is still
int size=n/p; global.

int localData[size] = localize(allData[]);

Abstract from real architecture but keep it meaningful.

i Local <-> Global

= Do not mix global and local accesses.
= Good policy.

= Protect global accesses.
= Local accesses do not need protection.

= Owner compute rule — very important;

= A process owns some defined data and is responsible for
its associated computations.

= mySize(allData[], i) instead of n/p for everyone.

= localToGlobal(local,i,j) gives the index in allData[]
of the local index i for the thread j.

i Synchronized Memory

= Full-empty variables

= useful 1-place (blocking) queue
= int t'=0; declares and fill an FE variable

= important: accesses incur some overhead

10

i Reduce and Scan (=Prefix)

= Useful collective operations used as steps in
algorithms.
= Associative and commutative operations.
=« Reduce: / scan: \
= least=min/dataArray: local min of the global array.

= total=+/count; local total is the sum of all local
counts.

s beforeMe=+\count; local beforeMe contains the
prefix (for this thread, with + operator) over
counts.

« Implicit barrier: all threads execute these @
statements.

11

i Reduce

= Avoid

= exclusive { total += priv_count; }
serial code

s Use

= total = +/priv_count;
abstract code — parallel & scalable

12

i Count 3s — Try 3

O~ v N e W

[= =
=] @ N = W N =2 O WD

int array[length]; The data is global
int t; Number of desired threads
int total=0; Result of computation, grand total

int lengthPer=ceil(length/t);
forall(index in(0..t-1))

{

int priv count=0; Local accumulation
int i, myBase=index*lengthPer:

for(i=myBase; i<min(myBase+lengthPer, length); i++)

{

if(array[i]==3) There’s no concurrent read since
{ Array has been partitioned
priv_count++;
}
X
exclusive { total+=priv count; } Compute grand total

12-02-2010 MVP'10 - Aalborg University 13

i How to Formulate Parallelism?

= Fixed parallelism — fix the number of threads
= Not scalable, not portable — avoid

= Unlimited parallelism may be missleading.

Elegant and smart, suggests

int count = O;
— O(Alog n)
{Om”(' in (0..n-1)) but P<<n in practice so
) , o O(rlog P + n/P).
count = +/(array[i]321:0): practice simulation of the
} missing processes Iis
expensive.

Goal: Identify parallelism and structure it to minimize interations.
14

i Scalable Parallelism

= Respect locality.

= Find right granularity for the decomposition =
find the right size of sub-problems.

= Minimize interactions.
= Keep tasks as independent as possible.

= May be contradictory w.r.t. concurrency.

15

i Example Revisited

1 int array[length];

2 int t:

3 int total;

4 forall(j in(0..t-1))

5 |

6 int size=mySize(array,0);
7 int myData[size]=localize(array[]);
8 int i, priv_count=0;

9 for(i=0; i<size; i++)

10 {

1Ll if (myData[i]==3)

12 {

13 priv_count++;

14 }

15 }

16 total =+/priv_count;

17 }

12-02-2010

The data is global
Number of desired threads
Result of computation, grand total

Figure size of local part of global data
Associate my part of global data with

local variable
Local accumulation

ompute grand total

MVP'10 - Aalborg University 16

i Sorting

Problem

Arrange an unordered collection of
elements intfo monotonically increasing
(or decreasing) order.
Let S =<aqy,0,,...0,>.
Sort Sinto S' = <a;,a,,..,.a,> such that
a' <ai forlci<jen
and S’ is a permutation of S.

Here the elements are words.

17

Recall on Comparison Based Sorting
i Algorithms

Bubble sort +—— o(#?)
Selection sor‘r’/
Q(n) - Insertion sort+—— O(r¥)

Q7 logn)- Quick sort /

Merge sort - O(n logn)
Heap sort +—

18

i Fundamental Distinction

= Comparison based sorting:
« Compare-exchange of pairs of elements.

= Lower bound is Q(n logn) (proof based on
decision trees).

= Merge & heap-sort are optimal.
= Non-comparison based sorting:
= Use information on the element to sort.

= Lower bound is Q(n).
= Counting & radix-sort are optimal.

19

Alphabetizing

i Sorting Example

= Unlimited parallelism
= 0dd/even interchange
= |ots of copies
= Fixed parallelism over the letters of the
alphabet
= by batch
= load balancing problem, not scalable
= Scalable parallelism
= Batcher’s sort — idea from sorting networks

20

Unsorted
3 2 3 8 5 6 4 |
]

2 3 3 8 5 6 1 4

Odd/even b L

interchange * * * 5 & 1 6 4
g L

3 1 5 4 8 6

3 3 4 5 6 8

12-02-2010 Sorted

Phase 1 (odd)

Phase 2 (even)

Phase 3 (odd)

Phase 4 (even)

Phase 5 (odd)

Phase 6 (even)

Phase 7 (odd)

Phase 8 (even)

21

i Non-Peril-L Pseudo-code

1. procedure ODD-EVEN(n)

2. begin

3. gfori = 1tondo @(nZ)
4 begin

5. if / 1s odd then

0. for j :==0ton/2 — 1do (al,az),(a3,a4)...
7. compare-exchange(as i1, azj12);

8. if 7 1s even then

9. e — L n e (az,a3),(a4,a5)...
10. compare-exchange(as ;. azjy1);

I11. end for

12. end ODD-EVEN

Algorithm 9.3 Sequential odd-even transposition sort algorithm.

12-02-2010 MVP'10 - Aalborg University 22

O ~J o N = W=

I = I S
= W N = O WO

15
16
17
18
19
20
21
22
o
24
25
26
27
28

bool continue=true;

rec

Lin];

while(continue) do

{

Foialll dnf(l 0-2:71

{

}

rec temp;
if(stremp(L[i].x,L[i+1].x)>0
1

temp=L[i];

Lli]=L]i+]

L[i+l]=temp;
}

forall(3 n{0in-":9))

{

rec temp;
bool done = true;
if(stremp(L[i]«x,L[1+1]).x)>0)
{

temp=L[i];

i1l |

Liitl]|=temp;

done=false;
}
continue=!(&&/done);

The data is global

Stride by 2

Is odd/even pair misordered?

Yes, fix

Stride by 2

Set up for termination test
Is even/odd pair misordered?

Yes, interchange

Not done yet

Were any changes made?

23

i Hidden Communication of Odd/Even sort

—® —O O—

Step 1 Step 2 Step 3

Figure 9.1 A parallel compare-exchange operation. Processes P; and P; send their elements to
each other. Process P; keeps min{a;, a;}, and P; keeps max{a;, a;}.

= Compare-exchange operation
= possibly in parallel

= communication time comparable (or greater) to
the comparisons

24

00 =] o N sk W B =

11
12
13
14
16
17
18
19
20
21
22
P
24
25

26
27
28
29
30
21l

rec L[n];

forall(j in(0..25))

{

}

local batch

int myAllo=mySize(L, 0);
rec LocL[]=localize(L[]):;
int counts[26]=0;

The data is global
A thread for each letter

Number of local items
Make data locally referenceable
Count number of each letter

int i, j, startPt, myLet; sjze of the batch

for(i=0; i<myAllo; i++)

{

First, count number w/each letter; need this

counts[letRank(charAt (LocL[1].x,0))]++;

}

counts[index|=+/counts|[index];
myLet=counts|[index];
rec Temp[myLet]:;
3=0;
fort: 0: 1-n: 111
1
if (index==letRank(charAt(L[i].x%,0)))
{
T
}

}
alphabetizeInPlace(Temp[]);

startPt=+\myLet; .
prefix=where to start
j=startPt-myLet;
for(i=0; i<count; i++)
{
L[j++]1=Temp[i];
}

Figure how many of each letter reduce
Number of records of my letter

Allocate local storage for records

Index for local array

Move records locally for local alphabetize

copy global to local

Save record locally

Alphabetize within this letter locally 10Cal sort

Scan counts # records ahead of these; scan
synchs, so okay to overwrite L, once sorted
Find my starting index in global array

Return records to original global memory

copy local to global

i Sorting Networks

= Mostly of theoretical interest.

= Key idea: Perform many comparisons in
parallel.

= Key elements:
= Comparators: 2 inputs, 2 outputs.

=« Network architecture: Comparators arranged in
columns, each performing a permutation.

= Speed proportional to the depth.

26

i Comparators

x" = min{x, y} x" = min{x, y}
X — X P
Yy — y D
y' = max({x, y} ¥ = max{x, y}
(a)
x’ = max{x, v} x’ = max{x, y}
X — X T
Vo — y o
y' = min{x, y} y" = min{x,)
(b)

Figure 9.3 A schematic representation of comparators: (a) an increasing comparator, and (b) a
decreasing comparator.

i Sorting Networks

Columns of comparators

Input wires
|
Interconnection network
|
|
|
Output wires

Figure 9.4 A typical sorting network. Every sorting network is made up of a series of columns,
and each column contains a number of comparators connected in parallel.

28

i Bitonic Sequence

Definition

A bitonic sequence is a sequence of
elements <qy,qy,...,0,> S.1.

1.3i,0<i¢<n-1s.t.<q,,..a> is
monotonically increasing and
<Qi,q,...,0,.1> iS monotonically
decreasing,

2.or there is a cyclic shift of indices

so that 1) is satisfied.

29

i Bitonic Sort

= Rearrange a bitonic sequence to be sorted.

= Divide & conquer type of algorithm (similar to
quicksort) using bitonic splits.

= Sorting a bitonic sequence using bitonic splits =
bitonic merge.

= But we need a bitonic sequence...

30

Bitonic Split

<dg,dy,---,8n/2-1.8n/2.n/2+1-+ A1

S{<S,
s; & s, bitonic!

31 - <min{ao,an/2},min{al,an/2+1},... ,min{an/z_l,an_1}>

b;

S, = <max{ao,an/2},maxw_l,an_1}>
\bi.

12-02-2010

MVP'10 - Aalborg University

31

logn stages

| Bitonic Merging Network

»

Wires

n/2 comparators

|| |v
o on Vol %} ™ o ol <t [o%e} o on vy < o < vy
— — — — o~ o o <t O N (o))
MDD M DDy My MDY DY DY DY
\NPZERN RN VAN N VAN NI VAN N VAN VAN 7N AN VAN VNI VAN
on o %} Vol o ™ =t ol [o%s} o (Vg en < o w <
— — — — o~ on ol el <t ™ N
NP &P ¥ &P & % % D
JaA) Jan) 4R A JA A A JAA) JaA)
N N N N NV N N V
o W [o%s} < < o) <t q o o0 < % % @ <
— — — —
_] 2 2 _ 4
&> = & &
o1 sl =] &F &
& ——b m | ¢ ——
) AN AR
N TV m_lu T\
e’) o%e) N < o~ <t < W o — o v en| oo o
= = - | N Y| | en| | — ol
|
e SV,
% " Q%
& _ S,
D " D
% _ b
< " b
1
N — D
an ARy
N AN
1
en| | oo o o | | < In|l o <o <o v o o o
— — — (a| ﬂ/ N \O =t o (@] —
< — o — < — < — < — o — < — < —
(e} (e} — — (e} (e} — — (e} (e} — — (e} (e — —
= o jan = — — —_— —_ o < o e f f f— -
(e} (e} (e} (e} (e} (e} (e} (e} — — — — — — — —

i Bitonic Sort

= Use the bitonic network to merge bitonic
sequences of increasing length... starting
from 2, etc.

= Bitonic network is a component.

33

i Bitonic Sort

Wires
0000
0001
0010
0011
0100

A AN

log s stages
D BM[2]
& BM[4]
© BM[2]
& BM[8]
& BM[2]

Simulated on a seria

Cost: O(log2n).
computer: O(771og?n).

SM[16]

1001
1010
1011
1100
1101
1110
1111

e JJJ_V_I..LArJ

© BM

2]

& BM[4]

¢ BM

2]

© BM]

2]

© BM[4]

© BM[8]

ThreadID: 0 1 2 3 4 5 6 7

As bits: 0000 0001 0010 0011 0100 0101 0110 0111

Input: [27 26 25] [21 06 16] [11 03 13] [33 22 04]

(p,d)

(-,0) [27 26 25] [21 16 06] [13 11 03) [33 22 04]
Batcher’s algorithm]

(1) Each thread has some local records and sorts them. |, ,,
Result: bitonic sequences.

(1,2) [01 06 15] [26 27 40] [38 28 22] [19 13 04]

(0,2) [10 15 16] [26 27 40] [31 28 22] [08 04 03]

(2,3) [10 15 16] [03 04 08] [22 28 31) [26 27 40]

. [
(1,3) [03 04 08] [10 15 16] [22 26 27] [28 31 40]
(0,3) [05 06 08] [15 16 18] [25 26 27] [38 39 40]

35

ThreadID: 0 1 2 3 4 5 6 7

As bits: 000 (0] (010 0] 0100 (011 0110 0111
T Use bitonic merge — log p phases of O(log p) steps. |, ,,,
o) Each step costs n/p.

Total: O(n/p*log n/p + n/p*log?p)

(-,0) (27 26 25] [21 16 06) [13 11 03] (33 22 04]

(0,1) [26 27 40] [15 06 01] [13 28 38)] [22 19 04]

E |

(1,2) [01 06 15] [38 28 22) [19 13 04]

(0,2) [10 15 16] [08 04 03]

(2,3) [10 15 16] [22 28 31] [26 27 40]
[[]

(1,3) [03 04 08) [22 26 27)] [28 31 40]

(0,3) (05 06 08] [25 26 27] [38 39 40]

i Reflection

s Odd-even sort
= lots of communication
= bad complexity

= Batch sort”
= good complexity
= bad scalability
= Bitonic sort
= good complexity if p<<n @
= Still a lot of communication

Efficient?

37

i Another Solution

= Partition the array over P.

= Use a good sorting algorithm locally.

= Use merge-sort in parallel.

= Good: simple with good complexity.

= Bad: the last step has limited parallelism.
= Still good: the last step costs nlog p.

= Even better: use tbb::parallel_for for
recursive splitting and sorting (teaser).

38

