
1st Steps Toward Parallel 
Programming

Alexandre David
1.2.05

adavid@cs.aau.dk



12-02-2010 MVP'10 - Aalborg University 2

Data and Task Parallelism
Do we parallelize the data or the code?

Data parallelism: same operation to different 
data items at the same time. Parallelism grows 
with data.
E.g. on GPUs.
Task parallelism: do different tasks at the same 
time. Number of tasks may be fixed and not 
scalable.
E.g. pipelines.



12-02-2010 MVP'10 - Aalborg University 3

Peril-L Notation
Pseudo-code for parallelism.

simplified notation for describing algorithms
easy to go from pseudo-code to a programming 
language
conceptually complete and unambiguous (for us)
possible to reason about performance
here for parallelism
execute on a CTA – locality awareness
C look & feel
Important: Not Peril-L notation itself but the 
concepts that go with it.



12-02-2010 MVP'10 - Aalborg University 4

Parallel Threads

Conceptually
Consider an unordered set of indices (range specified).
Execute the code over that set.

Parallelism:
The index range = a set S of indices.
A logical thread per index of S executes the code with 
that index value.
No order is enforced.
Synchronization is not specified.

forall(<integer variable> in (<index range>))
{

<body>
}



12-02-2010 MVP'10 - Aalborg University 5

Synchronization
If you do not enforce order between threads 
there will be no order.

Corollary: Threads are evil, if they can behave in 
a bad way, they will.

Mutual exclusion: exclusive { <body> }
Barrier synchronization: barrier



12-02-2010 MVP'10 - Aalborg University 6

Barrier
forall(index in (1..12))
{
printf(“tweedle dee\n”);
barrier;
printf(“tweedle dum\n”);

}



12-02-2010 MVP'10 - Aalborg University 7

Memory Model
Local variables distinguished from global 
variables.

Locality is defined by scope.
Global variables are underlined.
Be careful to concurrent writes.
int data[n];
forall(index in (0..n-1))
{
if (data[index]<0)
{
data[index]++;

}
}

OK



12-02-2010 MVP'10 - Aalborg University 8

Global -> Local Memory
Recall: CTA has no global memory.

Structures are distributed.
We need a way to map to local memory.
localize makes the mapping.

int allData[n];
forall(t in (0..p-1))
{
int size=n/p;
int localData[size] = localize(allData[]);

…

Accesses of thread t are
local to localData.
Accesses to allData is still
global.

Abstract from real architecture but keep it meaningful.



12-02-2010 MVP'10 - Aalborg University 9

Local <-> Global
Do not mix global and local accesses.

Good policy.

Protect global accesses.
Local accesses do not need protection.
Owner compute rule – very important:

A process owns some defined data and is responsible for 
its associated computations.

mySize(allData[], i) instead of n/p for everyone.
localToGlobal(local,i,j) gives the index in allData[] 
of the local index i for the thread j.



12-02-2010 MVP'10 - Aalborg University 10

Synchronized Memory
Full-empty variables

useful 1-place (blocking) queue
int t’=0; declares and fill an FE variable
important: accesses incur some overhead



12-02-2010 MVP'10 - Aalborg University 11

Reduce and Scan (=Prefix)
Useful collective operations used as steps in 
algorithms.

Associative and commutative operations.
Reduce: / scan: \
least=min/dataArray; local min of the global array.
total=+/count; local total is the sum of all local 
counts.
beforeMe=+\count; local beforeMe contains the 
prefix (for this thread, with + operator) over 
counts.
Implicit barrier: all threads execute these 
statements. ?



12-02-2010 MVP'10 - Aalborg University 12

Reduce
Avoid

exclusive { total += priv_count; }
serial code

Use
total = +/priv_count;
abstract code → parallel & scalable



12-02-2010 MVP'10 - Aalborg University 13

Count 3s – Try 3



12-02-2010 MVP'10 - Aalborg University 14

How to Formulate Parallelism?
Fixed parallelism – fix the number of threads

not scalable, not portable → avoid

Unlimited parallelism may be missleading.

int count = 0;
forall(i in (0..n-1))
{
count = +/(array[i]3?1:0);

}

Elegant and smart, suggests
O(λlog n)
but P<<n in practice so
O(λlog P + n/P).
In practice simulation of the
missing processes is
expensive.

Goal: Identify parallelism and structure it to minimize interations.



12-02-2010 MVP'10 - Aalborg University 15

Scalable Parallelism
Respect locality.

Find right granularity for the decomposition =
find the right size of sub-problems.

Minimize interactions.
Keep tasks as independent as possible.

May be contradictory w.r.t. concurrency.



12-02-2010 MVP'10 - Aalborg University 16

Example Revisited



12-02-2010 MVP'10 - Aalborg University 17

Sorting

Arrange an unordered collection of
elements into monotonically increasing
(or decreasing) order.
Let S = <a1,a2,…,an>.
Sort S into S’ = <a1’,a2’,…,an’> such that

ai’ ≤ aj’ for 1 ≤ i ≤ j ≤ n
and S’ is a permutation of S.

Problem

Here the elements are words.



12-02-2010 MVP'10 - Aalborg University 18

Recall on Comparison Based Sorting 
Algorithms

Bubble sort
Selection sort
Insertion sort

Quick sort
Merge sort
Heap sort

O(n2 )

Θ(n2 )

Ω(n)

Θ(n logn)
Ω(n logn)



12-02-2010 MVP'10 - Aalborg University 19

Fundamental Distinction
Comparison based sorting:

Compare-exchange of pairs of elements.
Lower bound is Ω(n logn) (proof based on 
decision trees).
Merge & heap-sort are optimal.

Non-comparison based sorting:
Use information on the element to sort.
Lower bound is Ω(n).
Counting & radix-sort are optimal.



12-02-2010 MVP'10 - Aalborg University 20

Sorting Example
Alphabetizing

Unlimited parallelism
odd/even interchange
lots of copies

Fixed parallelism over the letters of the 
alphabet

by batch
load balancing problem, not scalable

Scalable parallelism
Batcher’s sort – idea from sorting networks



12-02-2010 MVP'10 - Aalborg University 21

Odd/even
interchange



12-02-2010 MVP'10 - Aalborg University 22

Non-Peril-L Pseudo-code

(a1,a2),(a3,a4)…

(a2,a3),(a4,a5)…

Θ(n2 )



12-02-2010 MVP'10 - Aalborg University 23



12-02-2010 MVP'10 - Aalborg University 24

Hidden Communication of Odd/Even sort

Compare-exchange operation
possibly in parallel
communication time comparable (or greater) to 
the comparisons



12-02-2010 MVP'10 - Aalborg University 25

local batch

size of the batch

reduce

copy global to local

local sort

prefix=where to start

copy local to global



12-02-2010 MVP'10 - Aalborg University 26

Sorting Networks
Mostly of theoretical interest.
Key idea: Perform many comparisons in 
parallel.
Key elements:

Comparators: 2 inputs, 2 outputs.
Network architecture: Comparators arranged in 
columns, each performing a permutation.
Speed proportional to the depth.



12-02-2010 MVP'10 - Aalborg University 27

Comparators



12-02-2010 MVP'10 - Aalborg University 28

Sorting Networks



12-02-2010 MVP'10 - Aalborg University 29

Bitonic Sequence

A bitonic sequence is a sequence of
elements <a0,a1,…,an> s.t.

1. ∃i, 0 ≤ i ≤ n-1 s.t. <a0,…,ai> is
monotonically increasing and
<ai+1,…,an-1> is monotonically
decreasing,

2.or there is a cyclic shift of indices
so that 1) is satisfied.

Definition



12-02-2010 MVP'10 - Aalborg University 30

Bitonic Sort
Rearrange a bitonic sequence to be sorted.
Divide & conquer type of algorithm (similar to 
quicksort) using bitonic splits.

Sorting a bitonic sequence using bitonic splits = 
bitonic merge.
But we need a bitonic sequence…



12-02-2010 MVP'10 - Aalborg University 31

Bitonic Split

<a0,a1,…,an/2-1,an/2,an/2+1,…,an-1>

s1 = <min{a0,an/2},min{a1,an/2+1},…,min{an/2-1,an-1}>
bi

s2 = <max{a0,an/2},max{a1,an/2+1},…,max{an/2-1,an-1}>
bi’

s2
s1

s1 ≤ s2
s1 & s2 bitonic!



12-02-2010 MVP'10 - Aalborg University 32

Bitonic Merging Network
logn stages

n/2 com
parators

⊕BM[n]



12-02-2010 MVP'10 - Aalborg University 33

Bitonic Sort
Use the bitonic network to merge bitonic 
sequences of increasing length… starting 
from 2, etc.
Bitonic network is a component.



12-02-2010 MVP'10 - Aalborg University 34

Bitonic Sort

logn stages

Cost: O(log2n).
Simulated on a serial computer: O(n log2n).



12-02-2010 MVP'10 - Aalborg University 35

Batcher’s algorithm
Each thread has some local records and sorts them.
Result: bitonic sequences.



12-02-2010 MVP'10 - Aalborg University 36

Use bitonic merge – log p phases of O(log p) steps.
Each step costs n/p.
Total: O(n/p*log n/p + n/p*log2p)



12-02-2010 MVP'10 - Aalborg University 37

Reflection
Odd-even sort

lots of communication
bad complexity

“Batch sort”
good complexity
bad scalability

Bitonic sort
good complexity if p<<n
still a lot of communication

? Efficient?



12-02-2010 MVP'10 - Aalborg University 38

Another Solution
Partition the array over P.
Use a good sorting algorithm locally.
Use merge-sort in parallel.
Good: simple with good complexity.
Bad: the last step has limited parallelism.
Still good: the last step costs nlog p.
Even better: use tbb::parallel_for for 
recursive splitting and sorting (teaser).


