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i How much do we need to know?

= Important to know the architecture of parallel
hardware.

= Not all details are important to programmers
= keep portability
= keep up with technological changes

= The point: Get a meaningful model.



i Intel Core Duo
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Figure 2.22 State diagram of a simple three-state coherence protocol.



i AMD Dual Core Opteron
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i SMP
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i Larger SMP — Sun Fire
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Note: Expensive
hardware.
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= N X N connections.
= EXpensive, limited.
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i Heterogeneous chips

s GPUs
= 800 ALU on ATI’s latest 4800 series.
= --logic, ++computational units

s FPGAS

= PCIl boards available
= reconfigurable

s Cell
= Dual-threaded PPC — PPU, 64 bits
= 8x SPU
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Cell architecture

NoO cache coherence
protocol.

Different philosophy:
the PPU is a coordinator,
the SPUs do the job.

Difficult to program.
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i Clusters

= “Cheap” PCs connected together.
= GB ethernet
= Infiniband

= Memory private to each machine,
use message based communication.

= Scalable but high latency.
= Sold by racks.
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i BlueGene
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i Interconnect
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3-D torus for standard
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Collective network for
fast reductions.
Very powerful.
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i Broadcast/Reduction

Broadcast Reduce
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i Cut-through routing

= Simplified packet routing:
= Packets take the same path
(1x routing information).
= In sequence packet delivery (no sequencing).

= Error detection at message level, cheap detection
(for good networks).

= Fixed size unit for packets = flow control digits
(flits).
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Figure 2.26 Passing a message from node 7 to /5 (a) through a store-and-forward communica-
tion network; (b) and (c) extending the concept to cut-through routing. The shaded regions represent
the time that the message is in transit. The startup time associated with this message transfer is as-
sumed to be zero.
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i Lessons

= Very different architectures.
= SMP
= Distributed
= But we want one meaningful model.

= Hints:
= local accesses - cheap
= Non-local accesses - expensive
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i RAM model

= Seqguential execution unit with unbounded
memory.

= every operation takes 1 unit of time

= Limited
= Ok for algorithms — reason on complexity
= unrealistic
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i Application of the RAM model

1 location=-1: 1 location=-1:
2 for(j=0; j<n; j++) 2 hi=n-1;
2 3 lo=0;
4 if(A[j]==searchee) 4 while(lo!=hi)
5 { 5
6 location=7j; 6 mid=lo+floor((hi-lo+1)/2);
7 break; 7 if (A[mid]==searchee)
8 } 8 break;
9 1} 9 if (A[mid]>searchee)
10 hi=mid;
11 else
12 lo=mid+1;
13 }

update of location missing
Expected: O(n), O(log n)

(array must be sorted)
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i PRAM model

= Several execution units accessing one shared
unbounded memory

= global access
= Synchronous access — one global clock

= contention resolved by pre-defined rules
« EREW, CREW, CRCW, ERCW
= least powerful, least convenient. EREW
= most powerful, most convenient: CRCW

= lesson: reason on CRCW but apply on EREW because
It Is possible to simulate one with the other (in
polynomial time)

= lilke RAM: good for algorithms, complexity...
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i CTA (Candidate Type Architecture)

s Account for communication costs.
= Applies to clusters & SMPs.
= Local/non-local accesses.

= Goal: Achieve In practice the predicted running
time. PRAM iIs misleading in that respect.

= The catch: Not easy to estimate communication
costs.

= Model:

= Interconnected processors with RAM

= topology not specified but this impacts
communication costs.
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i Typical A

Architecture Family Computer Lambda
Chip Multiprocessor* AMD Opteron 100
Shared-memory Multiprocessor Sun Fire E25K 400-660
Co-processor Cell N/A

Cluster HP BL6000 w/GbE 4,160-5,120
Supercomputer BlueGene/L 8960

‘CMP’s A value measures a transfer between L1 data caches on chip.
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i Lesson

= Use locality
»« temporal & spatial

= sSometimes redundant computation is better than
sending data around

= Exact number of processors supplied at
runtime.
= Scale/not tied to one setup
= Note: A increases with P.
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i Memory reference mechanisms

= Shared memory

= avoid race conditions, needs synchronization
= One-sided

= NOt common

= private (local) & shared non-coherent memory
= Message passing — 2-sided

= MPI

= Complex communication protocols.
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i Memory consistency models

= Sequential consistency — expensive.
= serialize the operations of all processors
= operations obey specified order

= Relaxed consistency — weaker.
= variations

= Keep In mind: There are hardware tricks to
get sequential consistency (CAS/TAS).
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‘L Bus Based Networks
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‘L Crossbar Networks
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______________

Parallel access — expensive.
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i Omega networks

Multi-stage network — compromise cost/performance.
N nodes — log n stages.

000
001

—— 000
001

010 .
011

010
011

100
101

100
101

110 7
111

1. 110
[ 111

Figure 2.13  An example of blocking in omega network: one of the messages (010 to 111 or 110
to 100) is blocked at link AB.



‘L Linear Arrays and Meshes
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Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.
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Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh
with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.



i Hypercubes
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Figure 217 Construction of hypercubes from hypercubes of lower dimension.



i Fat trees

More bandwidth where it is needed.

S H8 vd v BS bE BS b

Figure 2.19 A fat tree network of 16 processing nodes.
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i Evaluating The Networks

= All the previous topologies have advantages
and disadvantages.

= Important factors: cost and performance.

s Define criteria to characterize cost and
performance.
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i Criteria

= Diameter: maximum distance p, <> p,.
= Connectivity: measure of multiplicity of
paths.

= Bisection width: minimum number of links
to cut In order to partition the network in 2
equal halves.

s Bisection bandwidth: minimum volume of
communication allowed between 2 halves.

s Cost: number of communication links, 1.e.,
wires.
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