Parallel Computers

Alexandre David 1.2.05 adavid@cs.aau.dk

How much do we need to know?

- Important to know the architecture of parallel hardware.
- Not all details are important to programmers
 - keep portability
 - keep up with technological changes
- The point: Get a meaningful model.

Figure 2.22 State diagram of a simple three-state coherence protocol.

AMD Dual Core Opteron

HyperTransport	> Memory-	controller	
Crossbar interconnect		easier for SMP	
System Request Interface cache		coherence protocol	
L2 cache	L2 ca	.che	Modified Owned Exclusive
L1-I L1-D	L1-I	L1-D	Shared Invalid
Processor P0	Proc F	essor 1	

Larger SMP – Sun Fire

18 boards connectedby a crossbarswitch.Snooping buses.Directory based cachecoherence protocol.Scalable/higherlatency.

Note: Expensive hardware.

- N x N connections.
- Expensive, limited.

Heterogeneous chips

GPUs

- 800 ALU on ATI's latest 4800 series.
- --logic, ++computational units
- FPGAs
 - PCI boards available
 - reconfigurable
- Cell
 - Dual-threaded PPC PPU, 64 bits

8x SPU

Cell architecture

No cache coherence protocol.

Different philosophy: the PPU is a coordinator, the SPUs do the job.

Difficult to program.

Clusters

- "Cheap" PCs connected together.
 - GB ethernet
 - Infiniband
 - ••••
 - Memory private to each machine, use message based communication.
 - Scalable but high latency.
 - Sold by racks.

3-D torus for standard data transfers.

Collective network for fast reductions. Very powerful.

(b)

Broadcast

Cut-through routing

Simplified packet routing:

- Packets take the same path (1x routing information).
- In sequence packet delivery (no sequencing).
- Error detection at message level, cheap detection (for good networks).
- Fixed size unit for packets = flow control digits (flits).

Figure 2.26 Passing a message from node P_0 to P_3 (a) through a store-and-forward communication network; (b) and (c) extending the concept to cut-through routing. The shaded regions represent the time that the message is in transit. The startup time associated with this message transfer is assumed to be zero.

Lessons

- Very different architectures.
 - SMP
 - Distributed
- But we want one meaningful model.
- Hints:
 - local accesses
 cheap
 - non-local accesses expensive

RAM model

- Sequential execution unit with unbounded memory.
 - every operation takes 1 unit of time
- Limited
 - ok for algorithms reason on complexity
 - unrealistic

Application of the RAM model

```
location=-1;
1
   for(j=0; j<n; j++)</pre>
2
3
4
      if(A[j]==searchee)
5
      {
6
        location=j;
7
        break;
8
      }
9
   }
```

```
location=-1;
 1
    hi=n-1;
 2
    lo=0;
 3
    while(lo!=hi)
 4
 5
    {
 6
      mid=lo+floor((hi-lo+1)/2);
 7
      if(A[mid]==searchee)
 8
        break;
 9
      if(A[mid]>searchee)
10
        hi=mid;
11
      else
12
        lo=mid+1;
13
   }
```

```
Expected: O(n), O(log n)
```

update of location missing

(array must be sorted)

PRAM model

- Several execution units accessing one shared unbounded memory
 - global access
 - synchronous access one global clock
 - contention resolved by pre-defined rules
 - EREW, CREW, CRCW, ERCW
 - Ieast powerful, least convenient: EREW
 - most powerful, most convenient: CRCW
 - lesson: reason on CRCW but apply on EREW because it is possible to simulate one with the other (in polynomial time)
 - like RAM: good for algorithms, complexity...

CTA (Candidate Type Architecture)

- Account for communication costs.
 - Applies to clusters & SMPs.
 - Local/non-local accesses.
 - Goal: Achieve in practice the predicted running time. PRAM is misleading in that respect.
 - The catch: Not easy to estimate communication costs.
- Model:
 - interconnected processors with RAM
 - topology not specified but this impacts communication costs.

SMP Cluster Cell . . . Memory latency specified in function of the real architecture. Non-local: λ .

Architecture Family	Computer	Lambda
Chip Multiprocessor*	AMD Opteron	100
Shared-memory Multiprocessor	Sun Fire E25K	400-660
Co-processor	Cell	N/A
Cluster	HP BL6000 w/GbE	4,160-5,120
Supercomputer	BlueGene/L	8960

*CMP's λ value measures a transfer between L1 data caches on chip.

Lesson

- Use locality
 - temporal & spatial
 - sometimes redundant computation is better than sending data around
- Exact number of processors supplied at runtime.
 - scale/not tied to one setup
 - Note: λ increases with P.

Memory reference mechanisms

- Shared memory
 - avoid race conditions, needs synchronization
- One-sided
 - not common
 - private (local) & shared non-coherent memory
- Message passing 2-sided
 - MPI
 - Complex communication protocols.

Memory consistency models

- Sequential consistency expensive.
 - serialize the operations of all processors
 - operations obey specified order
- Relaxed consistency weaker.
 - variations
- Keep in mind: There are hardware tricks to get sequential consistency (CAS/TAS).

Interconnects

Multi-stage network – compromise cost/performance. N nodes – log n stages.

Figure 2.13 An example of blocking in omega network: one of the messages (010 to 111 or 110 to 100) is blocked at link AB.

Figure 2.15 Linear arrays: (a) with no wraparound links; (b) with wraparound link.

Figure 2.16 Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

Figure 2.17 Construction of hypercubes from hypercubes of lower dimension.

More bandwidth where it is needed.

Figure 2.19 A fat tree network of 16 processing nodes.

Evaluating The Networks

- All the previous topologies have advantages and disadvantages.
- Important factors: cost and performance.
- Define criteria to characterize cost and performance.

Criteria

- **Diameter**: maximum distance $p_a \leftrightarrow p_b$.
- Connectivity: measure of multiplicity of paths.
- Bisection width: minimum number of links to cut in order to partition the network in 2 equal halves.
- Bisection bandwidth: minimum volume of communication allowed between 2 halves.
- Cost: number of communication links, i.e., wires.