
MVP
Introduction to Parallel 

Programming

Alexandre David
1.2.05

adavid@cs.aau.dk



05-02-2010 MVP'10 - Aalborg University 2

Notion of Parallelism
Familiar concept

ex: building a house, car manufacturing
decomposition into tasks
task dependency
static decomposition

Less familiar concept
dynamic decomposition
dynamic load balancing
synchronization



05-02-2010 MVP'10 - Aalborg University 3

Implicit Parallelism
Instruction-level parallelism

independent instructions run in parallel

Super-scalar CPUs
different execution units

Pipelines
cut instructions in small steps executed by 
different states and keep all the stages busy.

And other techniques: OO exec, prefetch…



05-02-2010 MVP'10 - Aalborg University 4

Pipelining and Superscalar 
Execution - Example

1. load R1,@1000
2. load R2,@1008
3. addR1,@1004
4. addR2,@100C
5. add R1,R2
6. store R1,@2000

c=a+b+c+d
as
c=(a+b)+(c+d)

Compiler

CPU

Instruction cycles

0 2 4 6 8

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

2x IF, ID, OF, … in the same cycle:
superscalar.



05-02-2010 MVP'10 - Aalborg University 5

The Change in Thinking
So far, programmer got the benefits of 
implicit parallelism for free.

No paradigm changes, profit from Moore’s law.
Sequential algorithms, sequential reasoning, 
sequential programming, the hardware keeps it 
sequential.
We are TOO used to that.

Multi-cores
No implicit parallelism anymore.
We need to change habits.



05-02-2010 MVP'10 - Aalborg University 6

Challenges
No existing bullet-proof

language for parallelism,
methodology & technique for parallelism.

Existing programs cannot exploit multi-cores.
Programmers do not how to write parallel 
programs in general.
Algorithms are generally sequential and not 
fit for parallel programming directly.
Write parallel & scalable programs to use 
more cores efficiently “for free”.



05-02-2010 MVP'10 - Aalborg University 7

GPUs
Special case

parallel by design from the start
graphical processing pipelined
so far application specific
try to generalize now but still, SIMD type of 
computations, computation intensive 
applications.



05-02-2010 MVP'10 - Aalborg University 8

Parallel Hardware
Home PC, stations.
Supercomputers – history

but still powerful shared memory machines
Vega 3 Series from Azul Systems up to
864 cores, 768GB RAM, for Java applications.

Clusters – popular, cheap, scalable.
Grid computing.



05-02-2010 MVP'10 - Aalborg University 9

Parallel vs. Distributed
“Parallel”: “parallel in the small”.

shared memory, multi-cores

“Distributed”: “parallel in the big”.
clusters, different machines

Can have both of course.



05-02-2010 MVP'10 - Aalborg University 10

System Level Parallelism
See PSS.
Not a solution, limited to the number of tasks 
you have.
Important to know:

bound threads – scheduled by the OS
unbound threads – scheduled by a library.



05-02-2010 MVP'10 - Aalborg University 11

Paradigm Shift
What compilers do:

change ordering,
remove redundancy,
reallocate resources,
but keep the semantics of the sequential 
program.
They preserve the original algorithm.

We need to design parallel algorithms, 
compilers are intrinsically limited.

Automatic algorithmic transformations are 
limited.



05-02-2010 MVP'10 - Aalborg University 12

Example
Sequential description.
Need to reformulate to 
get it parallel.
Still simple because 
additions are 
associative.
However, operations on 
double are 
approximate. The 
ordering matters for 
the precision.

sum = 0
for(i=0; i<n; ++i)
{
sum += x[i]

}



05-02-2010 MVP'10 - Aalborg University 13

Compare:

What if it’s not +?



05-02-2010 MVP'10 - Aalborg University 14

Prefix Sum
Useful primitive, aka 
scan.
Input: sequence of xi.
Output: sequence of yi.
yi=sumj≤i xj

How to parallelize?

For n > 0:
y[0]=x[0]
for(i=1; i<n; ++i)
{
y[i]=y[i-1]+x[i]

}
?



05-02-2010 MVP'10 - Aalborg University 15

Prefix Sum - sum



05-02-2010 MVP'10 - Aalborg University 16

Prefix Sum - prefix



05-02-2010 MVP'10 - Aalborg University 17

Parallel Prefix Computation 2
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end



05-02-2010 MVP'10 - Aalborg University 18

Parallel Prefix Computation 2
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end



05-02-2010 MVP'10 - Aalborg University 19

Prefix Computation 2

76

35 7666



05-02-2010 MVP'10 - Aalborg University 20

Pause
What have we done here?
Is it scalable?

What does it mean?

Is it efficient?
Is it optimal?

What does it mean?

What about correctness?
It is cache friendly?
…



05-02-2010 MVP'10 - Aalborg University 21

Concept of a Thread (PSS)
Thread of execution
Private

program
stack
program counter

Shared
memory
I/O



05-02-2010 MVP'10 - Aalborg University 22

Example of Execution Platform



05-02-2010 MVP'10 - Aalborg University 23

Execution Platform of the Book



05-02-2010 MVP'10 - Aalborg University 24

Limitations of Memory System 
Performance
The memory system is most often the 
bottleneck.
Performance captured by

latency and
bandwidth.

Remark: In practice latency is complicated 
to define: CL2, CL3, 2-2-2-5,…



05-02-2010 MVP'10 - Aalborg University 25

Effect on Performance: Example
Processor @1GHz (1ns cycle) capable of 
executing 4 IPC + DRAM with 100ns 
latency.
4 IPC @1GHz -> 4GFLOPS peak rating.
Processor must wait 100 cycles for every 
request.

Vector operations (dot product) @10MFLOPs.



05-02-2010 MVP'10 - Aalborg University 26

Improving with Cache
Note: Often “$$” on pictures (cash).
Hierarchical memory architecture with 
several levels of cache (2 common).
Instruction and data separate for L1.
Low latency, high bandwidth, but small.
Why does it improve performance????



05-02-2010 MVP'10 - Aalborg University 27

Why is $$ good?
Temporal locality

Repeated access to the same data in a small 
window of time.

Spatial locality
Consecutive data accessed by successive 
instructions.

Vital assumptions, almost always hold.
Very important for parallel computing.



05-02-2010 MVP'10 - Aalborg University 28

Case Study: Count 3s

int count3s(int *array, int length)
{

int count = 0;
for(i = 0; i < length; ++i)
{

if (array[i] == 3) count++;
}
return count;

}

C pointer

dereference

Serial code → parallel code?



05-02-2010 MVP'10 - Aalborg University 29

Try 1
Partition the input

static data partitioning

Shared variable counter



05-02-2010 MVP'10 - Aalborg University 30

Try 1

Thread creation

Partitioning

Count Not atomic → race

(wait for the threads missing)



05-02-2010 MVP'10 - Aalborg University 31

What can happen?
count: 0read count

inc local value

write count count: 1

read count

inc local value

write countcount: 1

Expected: 2

Race: The result depends on the interleaving
of the threads. It is unpredictable.



05-02-2010 MVP'10 - Aalborg University 32

Try 2: Make It Atomic
Use a mutex

locked
unlocked

Mutexes are used to define critical sections



05-02-2010 MVP'10 - Aalborg University 33

Try 2



05-02-2010 MVP'10 - Aalborg University 34

Correct But Abysmal Performance



05-02-2010 MVP'10 - Aalborg University 35

Try 3



05-02-2010 MVP'10 - Aalborg University 36

Better But Still Not Good



05-02-2010 MVP'10 - Aalborg University 37

Recall the Architecture

Cache coherence protocol



05-02-2010 MVP'10 - Aalborg University 38

Core i7



05-02-2010 MVP'10 - Aalborg University 39

False Sharing
Caches have some granularity =
cache line.
Usually on several words, 2-4 words.
Consecutive counters are not logically shared 
but they are physically shared on the same 
cache line.
The cache coherence protocol kicks in and 
kills performance because the line is 
constantly moving.



05-02-2010 MVP'10 - Aalborg University 40

Cache Coherence Protocols

We need additional hardware to keep 
multiple copies of the same memory bank 
consistent with each other.
We have seen that $$ is good but it does 
not come for free.
Mechanism known as cache coherence 
protocol, usually described as state 
machines.



05-02-2010 MVP'10 - Aalborg University 41



05-02-2010 MVP'10 - Aalborg University 42

Try 4: Pad the Counters



05-02-2010 MVP'10 - Aalborg University 43

Correct and Good

Limitation of the hardware



05-02-2010 MVP'10 - Aalborg University 44

Confirmation of the Memory Bandwidth 
Limit

no 3 in the array



05-02-2010 MVP'10 - Aalborg University 45

Lessons
Correctness
Performance
Scalability
Portability


