

Keep cost optimality: $p \log p = O(n)$, $\log p + \log \log p = O(\log p) = O(\log n) \rightarrow p = O(n/\log n)$.

 $\mathsf{pT}_\mathsf{P}=\mathsf{T}_\mathsf{S}+\mathsf{T}_0\to\mathsf{T}_0=\mathsf{O}(\textit{pn}\mathsf{log}\textit{p})=\mathsf{O}((\textit{p}\mathsf{log}\textit{p})^2).$

	Parallel formulation: Same as Prim's algorithm.
1.	procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
2.	begin
3.	$V_T := \{s\};$
4.	for all $v \in (V - V_T)$ do
5.	if (s, v) exists set $l[v] := w(s, v)$;
6.	else set $l[v] := \infty;$
7.	while $V_T \neq V$ do
8.	begin
9.	find a vertex u such that $l[u] := \min\{l[v] v \in (V - V_T)\};$
10.	$V_T := V_T \cup \{u\};$
11.	for all $v \in (V - V_T)$ do
12.	$I[v] := \min\{I[v], I[u] + w(u, v)\};\$
13.	endwhile
14.	end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 10.2 Dijkstra's sequential single-source shortest paths algorithm.

Parallel Algorithm procedure FLOYD_2DBLOCK($D^{(0)}$) 1. 2. begin for k := 1 to n do 3. 4. begin each process $P_{i,j}$ that has a segment of the k^{th} row of $D^{(k-1)}$; 5. broadcasts it to the $P_{*,j}$ processes; each process $P_{i,j}$ that has a segment of the k^{th} column of $D^{(k-1)}$; 6. broadcasts it to the $P_{i,*}$ processes; 7. each process waits to receive the needed segments; each process $P_{i,j}$ computes its part of the $D^{(k)}$ matrix; 8. 9. end end FLOYD_2DBLOCK 10.

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. $P_{*,j}$ denotes all the processes in the j^{th} column, and $P_{i,*}$ denotes all the processes in the i^{th} row. The matrix $D^{(0)}$ is the adjacency matrix.

16-04-2008

Alexandre David, MVP'08

38

$\begin{array}{c} 2 \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c}1\\1\\F\\3\\1\\G\end{array}$
$A^{1} = \begin{pmatrix} 0 & 2 & 3 & \infty & \infty & \infty & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & 1 & \infty & \infty & \infty \\ \infty & \infty & 0 & 1 & 2 & \infty & \infty & \infty \\ \infty & \infty & 0 & 0 & \infty & \infty & 2 & \infty & \infty \\ \infty & \infty & \infty & 0 & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & 0 & 1 & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0 \end{pmatrix}$	$A^{2} = \underbrace{\begin{array}{c} \text{Serial algorithm not} \\ \text{optimal but we can} \\ \text{use } n^{3}/\log n \text{ processes} \\ \text{to run in O(log^{2}n).} \\ \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
$A^{4} = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\ \infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & 0 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0 \end{pmatrix}$	$A^{8} = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\ \infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & 0 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0 \end{pmatrix}$

Also possible to modify Floyd's algorithm by replacing + by logical or and min by logical and.

