Graph Algorithms

B (Chapter 10)

Alexandre David

1.2.05

Today

= Recall on graphs.

= Minimum spanning tree (Prim’s algorithm).

= Single-source shortest paths (Dijkstra’s
algorithm).

= All-pair shortest paths (Floyd’s algorithm).

= Connected components.

Graphs — Definition

= A graph is a pair (VE)
« I/ finite set of vertices.
= £ finite set of edges.
e e E is a pair (u,v) of vertices.
Ordered pair — directed graph.
Unordered pair — undirected graph.

vertex
(a) (b)

Figure 10.1 (a) An undirected graph and (b) a directed graph.

16-04-2008 Alexandre David, MVP'08

Graphs — Edges

= Directed graph:
= (4,v) e E isincident from v and incident to v.
« (4,v) e E: vertex vis adjacent to w.

= Undirected graph:
=« (4,v) € E isincident on vand v.

» (4,v) e E: vertices vand vare adjacent to
each other.

(a)

4 adjacent to 6

(b)

Figure 10.1 (a) An undirected graph and (b) a directed graph.

16-04-2008

Alexandre David, MVP'08

Graphs — Paths

= A path is a sequence of adjacent vertices.
= Length of a path = number of edges.
= Path from vto v = uis reachable from v.
= Simple path: All vertices are distinct.

= A path is a cycle if its starting and ending
vertices are the same.

= Simple cycle: All intermediate vertices are
distinct.

Simple path: Simple path:
Simple cycle: Simple cycle:
Non simple cycle: Non simple cycle:

_,®

(a) (b)
Figure 10.1 (a) An undirected graph and (b) a directed graph.

Graphs

= Connected graph: 3 path between any
pair.

= G'=(V',E") sub-graph of G=(V,E) if V'cV
and E'cE.

= Sub-graph of G induced by V’: Take all
edges of E connecting vertices of V'cV.

= Complete graph: Each pair of vertices
adjacent.

= Tree: connected acyclic graph.

Sub-graph:
Induced sub-graph:

(a)
Figure 10.1

16-04-2008

(b)
(a) An undirected graph and (b) a directed graph.

Alexandre David, MVP'08 10

10

Graph Representation

= Sparse graph (|E| much smaller than |V|?):

= Adjacency list representation.

= Dense graph:
» Adjacency matrix.

= For weighted graphs (V,E,w): weighted
adjacency list/matrix.

11

11

1 if(v,v;)eE
a . =
"I 10 otherwise

<

A VI

0
]
]
1
0

- o © © O

0
]
0
0
0

— T = D
- o O = O

\4

|V|2 entries

Figure 10.2 An undirected graph and its adjacency matrix representation.

Undirected graph = symmetric adjacency matrix.

12

12

Figure 10.3 An undirected graph and its adjacency list representation.

16-04-2008

VI

4

|V|+|E| entries

I 2
2 | 3 5
3 2 5

4 5

5 2 3 4

Alexandre David, MVP'08

13

13

Minimum Spanning Tree

= We consider undirected graphs.

= Spanning tree of (V,E) = sub-graph
= being a tree and
= containing all vertices V.

= Minimum spanning tree of (V,E,w) =
spanning tree with minimum weight.

= Example: minimum length of cable to
connect a set of computers.

14

14

Figure 10.4 An undirected graph and its minimum spanning tree.

16-04-2008 Alexandre David, MVP'08

15

15

Prim’s Algorithm

= Greedy algorithm:
= Select a vertex.

= Choose a new vertex and edge guaranteed to
be in a spanning tree of minimum cost.

= Continue until all vertices are selected.

16

16

1
2
3
4
S5.
6
7
8

9.

procedure PRIM_MST(V, E, w, r)

begin
Vi = {r} Vertices of minimum spanning tree.
dir] = 0;
forallve (V —Vr)do Weights from V; to V.

if edge (r, v) exists set d[v] := w(r, v);
else set dv] = 00

while V7 # V do

begin

10. select find a vertex u such that d[u] := min{d[v]lv € (V — V')}
1. add Vi := Vr U {u};
12. update forallv e (V —Vr) do

13.
14.
15.

dlv] := min{d[v], wu, v)};
endwhile
end PRIM_MST

Algorithm 10.1 Prim's sequential minimum spanning tree algorithm.

17

17

(a) Original graph

a
b
.
d

¢

(b) After the first edge has

been selected
1

5 b

a

b

¢

d

e

p

a7 [1To]5 1 Joolod]

f

'rquu—o

o

b

2 — 0o wmw

c

2 =~ om -7

d

wmwo s —2 2
lomgggw

[

P

0

|
3
pove)
o)
2

1
0
5
1
0o
[os)

2 — o wmow

2 2o =2

wmo s —2 2
lomgggua

annanns

18

(b) After the first edge has
been selected

(c) After the second edge
has been selected

a b ¢ d e f

df] [1]o]2[1]4]o]
a |0 1 3 ocooc 3

b1l 0 5 1 o

c |3 5 0 2 1 ~©

dloc 1l 2 0 4 o0

e looox 1 4 0 5

fl2 coocoox 5 0

a b ¢ d e f

df] |1fo]2]1]4]3]
a |0 1 3 oooc 3

b1 0 5 1 x

c |3 5 0 2 1 ~

dloc 1l 2 0 4 =

e locoo 1 4 0 5

fl2 cooooo 5 0

19

(c) After the second edge
has been selected

vannanne

a |0 1 3 ocooo 3

b1l 0 5 1 oo

c |3 5 0 2 1 ~x

1 dloo 1l 2 0 4 o0

eloooccl 4 0 5

fl12 coocooo 5 0

(d) Final minimum a1 | abecdef
spanning tree l|0|2 |] ‘1|3|
a |0 1 3 oo 3

b1 0 5 1 o o0

c |3 5 0 2 1 =~

dlocl 2 0 4 o0

e locoox 1 4 0 5

fl2 cocooo 5 0

Prim’s Algorithm

= Complexity ©(n?).
= Cost of the minimum spanning tree:

= How to parallelize?
=« Iterative algorithm.
» Any d[v] may change after every loop.

> d[v]

veV

= But possible to run each iteration in parallel.

21

21

il-D Block Mapping

it i1

111 i

it iid

it iil

111 i

111 i

it iil

11 i

"""" i Tt i1l

A 11 111
111 i

111 i

11 1

111 i

i1 il

i1 111

1 I

141 idl

il 11

Processors 0 1 i p-1

(a)

n/p vertices per process

: p processes
[n vertices

n (b)

|

22

22

iParallel Prim’s Algorithm

1-D block partitioning: V; per P..
For each iteration:
P, computes a local min di[u].
All-to-one reduction to P, to compute the global min.
One-to-all broadcast of u.
Local updates of d[v].

Every process needs a column of the adjacency
matrix to compute the update.
©(n%/p) space per process.

23

23

Analysis

= The cost to select the minimum entry is
O(n/p + log p).

= The cost of a broadcast is O(log p).

= The cost of local update of the ¢ vector is
o(ryp).

= The parallel run-time per iteration is
O(rn/p + log p).

= The total parallel time (7 iterations) is
given by O(r?/p + n log p).

24

24

Analysis

= Efficiency = Speedup/# of processes:
E=5/p=1/(1+0((p logp)/n).
= Maximal degree of concurrency = n.

= To be cost-optimal we can only use up to
nflogn processes., ~ Maxat n7/p =0(n log p),

ith bound p=0,
= Not very scalable. with bound p=0(n)

25

Keep cost optimality: p logp=0(n), logp+loglogp=0O(logp)=0O(logn) —
p=0(n/logn).

pTp=Ts+T, — To=0(pn logp)=O((p logp)?).

25

Single-Source Shortest Paths:
Dijkstra’s Algorithm

= For (V,E,w), find the shortest paths from a
vertex to all other vertices.
= Shortest path=minimum weight path.
= Algorithm for directed & undirected with non
negative weights.
= Similar to Prim’s algorithm.

= Prim: store d[u] minimum cost edge
connecting a vertex of V; to u.

= Dijkstra: store I[u] minimum cost to reach u
from s by a path.in, Vy. .

26

Parallel formulation: Same as Prim'’s algorithm.

© NV e W~

— et e e WD)
e

procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
begin
Vr == {s};
forallve (V —Vr)do
if (s, v) exists set/|v] := w(s, v);
else set /[v] := o0;
while V' # V do
begin
find a vertex u such that /[u] := min{/[v]jv € (V — V)};
Vi = Ve Ulu};
forallv e (V—Vy)do
[[v] := min{/[v], e} + wiw v)}
endwhile
end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 10.2 Dijkstra’s sequential single-source shortest paths algorithm.

27

All-Pairs Shortest Paths

= For (V,E,w), find the shortest paths
between all pairs of vertices.

= Dijkstra’s algorithm: Execute the single-source

algorithm for n vertices — O(n3).
» Floyd’s algorithm.

28

28

All-Pairs Shortest Paths —

Dijkstra — Parallel Formulation

= Source-partitioned formulation: Each

process hac a cat nf verticee and com

theUp to n processes. Solve in ©(/7).

ute

= No communication, E=1, but maximal degree

of concurrency = n. Poor scalability.
= Source-parallel formulation (p>n):

0,
Up to 2 processes, 72/ logn for cost-optimal,
in which case solve in ©(7 logn).

« In parallel: n single-source problems.

29

29

Floyd’s Algorithm

= For any pair of vertices v;, v; € V, consider

all paths from v, to v; whose intermediate
vertices belong to the set {v,,v,,...,v,}.

= Let p, % (of weight d, W) be the minimum-

weight path among them.

30

30

Floyd’s Algorithm

= If vertex v, is not in the shortest path from

v, to v;, then p;; = p, D),

p, (9 =p, ()

31

31

Floyd’s Algorithm

= If v isin p;), then we can break p;;®
into two paths - one from v; to v, and one
from v, to v; . Each of these paths uses
vertices from {v,,v,,...,Vi_1}-

Pi j(k)
d, ©=d; KD+d, kD

32

32

Floyd’s Algorithm

= Recurrence equation:
g0 _ | WY) if k=0
U min(d® P, d%Y +d&Y) if k21

= Length of shortest path from v; to v; =
d; (. Solution set = a matrix.

33

33

iFond’s Algorithm

How to parallelize?

Lo N Sk LN

procedure FLOYD_ALL_PAIRS_SP(4)
begin
DO = 4.
for k :=1ton do
fori:=1tondo
for j :=1ton do

1

end FLOYD_A]:L_PAIRS_SP

O(n3)

Also works /n place.

ky . . (k=1) S(k=1)
d.f.—mm(d{.‘j .a’{.‘k +

k=1)Y.
.)

Algorithm 10.3 Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs
shortest paths of the graph G = (¥, E) with adjacency matrix A.

16-04-2008

Alexandre David, MVP'08

34

34

iParalleI Formulation

= 2-D block mapping:
= Each of the p processes has a sub-matrix
(n/Vp)? and computes its D®),
= Processes need access to the corresponding k
row and column of D&k1),

= kth iteration: Each processes containing part of

the kth row sends it to the other processes in

the same column. Same for column broadcast

on rows.

35

35

iZ-D Mapping

W

;.1

n

Jplanfaz

2.1y

(a)

1 n/\/p

!

S N A W VI
(=D 4L U =D

QL ju,
VB U

(b)

Figure 10.7 (a) Matrix D' distributed by 2-D block mapping into /P x /p subblocks, and (b)

the subblock of D) assigned to process 7 ;.

16-04-2008

Alexandre David, MVP'08 36

36

Communication

k column k column

o
SEas iR IR EERE

E row A
| | | « | = |
i DR
....... ‘.:_._ __)', .

1 TIT | 1

(a) (b)

Figure 10.8 (a) Communication patterns used in the 2-D block mapping. When computing f"i’
information must be sent to the highlighted process from two other processes along the same row
and column. (b) The row and column of /7 processes that contain the &™ row and column send
them along process columns and rows.

16-04-2008 Alexandre David, MVP'08 37

Parallel Algorithm

hhWe -

o

= o % =

procedure FLOYD_2DBLOCK(D™)
begin

for k :=1ton do

begin

each process P ; that has a segment of the ™ row of D*=1;

broadcasts it to the P, ; processes;
each process P ; that has a segment of the k™ column of D=0,
broadcasts it to the F; . processes;
each process waits to receive the needed segments;
each process P; ; computes its part of the D*) matrix;
end '
end FLOYD_2DBLOCK

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. Py ; denotes all the
processes in the /™ column, and 7; . denotes all the processes in the /™ row. The matrix D' is
the adjacency matrix.

16-04-2008

Alexandre David, MVP'08

38

38

;‘ Analysis
computation commuDicofion

n? "/
I'p= © (—) + O (— logp) :
P NGE

= E=1/(1+O((v/p logp)/n).

= Cost optimal if up to O((n/logn)?)
processes.

= Possible to improve: pipelined 2-D block
mapping: No broadcast, send to
neighbour. Communication: ©(n), up to
O(n?) processes & cost optimal.

39

39

All-Pairs Shortest Paths: Matrix
Multiplication Based Algorithm

= Multiplication of the weighted adjacency
matrix with itself — except that we replace
multiplications by additions, and additions
by minimizations.

= The result is a matrix that contains
shortest paths of length 2 between any
pair of nodes.

= It follows that 4” contains all shortest
paths.

40

40

Al =

28888BEE =

EEBBEBBB B

BEBEBEEREow

EEBBEERE ow

BEEEEEoE w
38888 c~3g 8
3388888
rorwyd 43l

c@8w¥BBEY

EEB8BELEo8w

88'—‘&0@[\:4;01

O WY WO

Dxxngéﬁwrj

A? 4

Serial algorithm not
optimal but we can
use r2/logn processes

|
EREEERRE=

to run in O(log?7).

R
g2

B

a4

EEEEEESRow
EREEERORw

XgHwwaﬁm

oC 00
o0 00
3 5
1 3
o0 2
o0 00
0 2
oo 0
0 00
00 00

0
1

O WY WO

=7
>0
0

DRHrQRHHWW

41

41

Transitive Closure

= Find out if any two vertices are connected.

= G*=(V,E*) where E*={(v,v;)|3 a path
from v, to v; in G}.

ol

o O

42

42

Transitive Closure

= Start with D=(a;; or).
= Apply one all-pairs shortest paths
algorithm.

= Solution:

o if d, | =oo

a _ .
7|1 ifd;>00ri=]

43

Also possible to modify Floyd’s algorithm by replacing + by logical or and min

by logical and.

43

Connected Components

= Connected components of G=(V,E) are the

maximal disjoint sets C,,...,C, s.t. V=UCk
and u,v € C iff u reachable from v and v
reachable from u.

0‘0 0‘0 (®)

Figure 10.10 A graph with three connected components: {1, 2. 3. 4}, {5. 6, 7}, and {8, 9}.

44

iDFS Based Algorithm

= DFS traversal of the graph — forest of
(DFS) spanning trees.

45

45

(b)

Figure 10.11 Part (b) is a depth-first forest obtained from depth-first traversal of the graph in part
(a). Each of these trees is a connected component of the graph in part (a).

46

Parallel Formulation

= Partition G into p sub-graphs. P; has
G=(V,E).

« Each P, computes the spanning forest of G.

= Merge the forests pair-wise.

= Each merge possible in O(n).
= Not described in the book — out of scope.

= Find if an edge of A has its vertices in B:
= no for all — union of 2 disjoint sets.
= yes for one — merge.

47

47

S e Wb —

~J

Partition the adjacency matrix.
1-D partitioning in p stripes of n/p
consecutive rows.

Processor |

Processor 2

48

49

iAnaIysis

local computation

— forest merging

- rmm— —

To= © <l> +O(nlogp)
p

= E=1/(1+0((p logp)/n).
= Up to O(n/logn) to be cost-optimal.
= Performance similar to Prim’s algorithm.

50

50

