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Today
Recall on graphs.
Minimum spanning tree (Prim’s algorithm).
Single-source shortest paths (Dijkstra’s
algorithm).
All-pair shortest paths (Floyd’s algorithm).
Connected components.
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Graphs – Definition
A graph is a pair (V,E )

V finite set of vertices.
E finite set of edges.
e ∈ E is a pair (u,v ) of vertices.
Ordered pair → directed graph.
Unordered pair → undirected graph.
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Graphs – Edges
Directed graph:

(u,v ) ∈ E is incident from u and incident to v.
(u,v ) ∈ E : vertex v is adjacent to u.

Undirected graph:
(u,v ) ∈ E is incident on u and v.
(u,v ) ∈ E : vertices u and v are adjacent to 
each other.
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4 adjacent to 6
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Graphs – Paths
A path is a sequence of adjacent vertices.

Length of a path = number of edges.
Path from v to u ⇒ u is reachable from v.
Simple path: All vertices are distinct.
A path is a cycle if its starting and ending 
vertices are the same.
Simple cycle: All intermediate vertices are 
distinct.
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Simple path:
Simple cycle:
Non simple cycle:

Simple path:
Simple cycle:
Non simple cycle:
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Graphs
Connected graph: ∃ path between any 
pair.
G’=(V’,E’) sub-graph of G=(V,E) if V’⊆V 
and E’⊆E.
Sub-graph of G induced by V’: Take all 
edges of E connecting vertices of V’⊆V.
Complete graph: Each pair of vertices 
adjacent.
Tree: connected acyclic graph.
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Sub-graph:
Induced sub-graph:
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Graph Representation
Sparse graph (|E| much smaller than |V|2):

Adjacency list representation.

Dense graph:
Adjacency matrix.

For weighted graphs (V,E,w): weighted 
adjacency list/matrix.
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Undirected graph ⇒ symmetric adjacency matrix.

|V|

|V|2 entries
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|V|

|V|+|E| entries
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Minimum Spanning Tree
We consider undirected graphs.
Spanning tree of (V,E) = sub-graph

being a tree and
containing all vertices V.

Minimum spanning tree of (V,E,w) = 
spanning tree with minimum weight.
Example: minimum length of cable to 
connect a set of computers.
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Spanning Trees
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Prim’s Algorithm
Greedy algorithm:

Select a vertex.
Choose a new vertex and edge guaranteed to 
be in a spanning tree of minimum cost.
Continue until all vertices are selected.
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Vertices of minimum spanning tree.

Weights from VT to V.

select

add
update
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Prim’s Algorithm
Complexity Θ(n2).
Cost of the minimum spanning tree:

How to parallelize?
Iterative algorithm.
Any d[v] may change after every loop.
But possible to run each iteration in parallel.

∑
∈Vv

vd ][
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1-D Block Mapping

p processes
n vertices
n/p vertices per process
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Parallel Prim’s Algorithm

1-D block partitioning: Vi per Pi.
For each iteration:

Pi computes a local min di[u].
All-to-one reduction to P0 to compute the global min.
One-to-all broadcast of u.
Local updates of d[v].

Every process needs a column of the adjacency
matrix to compute the update.
Θ(n2/p) space per process.
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Analysis
The cost to select the minimum entry is 
O(n/p + log p). 
The cost of a broadcast is O(log p). 
The cost of local update of the d vector is 
O(n/p). 
The parallel run-time per iteration is
O(n/p + log p). 
The total parallel time (n iterations) is 
given by O(n2/p + n log p).
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Analysis
Efficiency = Speedup/# of processes:
E=S/p=1/(1+Θ((p logp)/n).
Maximal degree of concurrency = n.
To be cost-optimal we can only use up to 
n/logn processes.
Not very scalable.

max at n2/p =Θ(n log p),
with bound p=O(n)

Keep cost optimality: p logp=O(n), logp+loglogp=O(logp)=O(logn) →
p=O(n/logn).
pTP=TS+T0 → T0=O(pn logp)=O((p logp)2).
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Single-Source Shortest Paths: 
Dijkstra’s Algorithm
For (V,E,w), find the shortest paths from a 
vertex to all other vertices.

Shortest path=minimum weight path.
Algorithm for directed & undirected with non 
negative weights.

Similar to Prim’s algorithm.
Prim: store d[u] minimum cost edge 
connecting a vertex of VT to u.
Dijkstra: store l[u] minimum cost to reach u 
from s by a path in VT.
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Parallel formulation: Same as Prim’s algorithm.
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All-Pairs Shortest Paths
For (V,E,w), find the shortest paths 
between all pairs of vertices.

Dijkstra’s algorithm: Execute the single-source 
algorithm for n vertices → Θ(n3).
Floyd’s algorithm.
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All-Pairs Shortest Paths –
Dijkstra – Parallel Formulation
Source-partitioned formulation: Each 
process has a set of vertices and compute 
their shortest paths.

No communication, E=1, but maximal degree 
of concurrency = n. Poor scalability.

Source-parallel formulation (p>n):
Partition the processes (p/n processes/subset), 
each partition solves one single-source 
problem (in parallel).
In parallel: n single-source problems.

Up to n processes. Solve in Θ(n2 ).

Up to n2 processes, n2/ logn for cost-optimal,
in which case solve in Θ(n logn).
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Floyd’s Algorithm
For any pair of vertices vi, vj ∈ V, consider 
all paths from vi to vj whose intermediate 
vertices belong to the set {v1,v2,…,vk}.
Let pi,j

(k) (of weight di,j
(k)) be the minimum-

weight path among them.
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Floyd’s Algorithm
If vertex vk is not in the shortest path from 
vi to vj, then pi,j

(k) = pi,j
(k-1).
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Floyd’s Algorithm
If vk is in pi,j

(k), then we can break pi,j
(k)

into two paths - one from vi to vk and one 
from vk to vj . Each of these paths uses 
vertices from {v1,v2,…,vk-1}. 
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Floyd’s Algorithm
Recurrence equation:

Length of shortest path from vi to vj = 
di,j

(n). Solution set = a matrix.
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Floyd’s Algorithm

Θ(n3)

Also works in place.

How to parallelize?
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Parallel Formulation
2-D block mapping:

Each of the p processes has a sub-matrix 
(n/√p)2 and computes its D(k).
Processes need access to the corresponding k 
row and column of D(k-1).
kth iteration: Each processes containing part of 
the kth row sends it to the other processes in 
the same column. Same for column broadcast 
on rows.
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2-D Mapping

n/√p
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Communication
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Parallel Algorithm
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Analysis

E=1/(1+Θ((√p logp)/n).
Cost optimal if up to O((n/ logn)2) 
processes.
Possible to improve: pipelined 2-D block 
mapping: No broadcast, send to 
neighbour. Communication: Θ(n), up to 
O(n2) processes & cost optimal.
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All-Pairs Shortest Paths: Matrix 
Multiplication Based Algorithm
Multiplication of the weighted adjacency 
matrix with itself – except that we replace  
multiplications by additions, and additions 
by minimizations.
The result is a matrix that contains 
shortest paths of length 2 between any 
pair of nodes. 
It follows that An contains all shortest 
paths.
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Serial algorithm not
optimal but we can
use n3/logn processes
to run in O(log2n).



42

16-04-2008 Alexandre David, MVP'08 42

Transitive Closure
Find out if any two vertices are connected.
G*=(V,E*) where E*={(vi,vj)|∃ a path 
from vi to vj in G}.
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Transitive Closure
Start with D=(ai,j or ∞).
Apply one all-pairs shortest paths 
algorithm.
Solution:
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Also possible to modify Floyd’s algorithm by replacing + by logical or and min 
by logical and.
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Connected Components
Connected components of G=(V,E) are the 

maximal disjoint sets C1,…,Ck s.t. V=UCk
and u,v ∈ Ci iff u reachable from v and v 
reachable from u.
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DFS Based Algorithm
DFS traversal of the graph → forest of 
(DFS) spanning trees.
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Parallel Formulation
Partition G into p sub-graphs. Pi has 
Gi=(V,Ei).

Each Pi computes the spanning forest of Gi.
Merge the forests pair-wise.

Each merge possible in Θ(n).
Not described in the book – out of scope.
Find if an edge of A has its vertices in B:

no for all → union of 2 disjoint sets.
yes for one → merge.
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Partition the adjacency matrix.
1-D partitioning in p stripes of n/p
consecutive rows.
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P1

P2
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Analysis

E=1/(1+Θ((p logp)/n).
Up to O(n/ logn) to be cost-optimal.
Performance similar to Prim’s algorithm.


