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Today

= Recall on graphs.

= Minimum spanning tree (Prim’s algorithm).

= Single-source shortest paths (Dijkstra’s
algorithm).

= All-pair shortest paths (Floyd’s algorithm).

= Connected components.




Graphs — Definition

= A graph is a pair (VE)
« I/ finite set of vertices.
= £ finite set of edges.
e e E is a pair (u,v) of vertices.
Ordered pair — directed graph.
Unordered pair — undirected graph.
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Figure 10.1 (a) An undirected graph and (b) a directed graph.
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Graphs — Edges

= Directed graph:
= (4,v) e E isincident from v and incident to v.
« (4,v) e E: vertex vis adjacent to w.

= Undirected graph:
=« (4,v) € E isincident on vand v.

» (4,v) e E: vertices vand vare adjacent to
each other.




(a)

4 adjacent to 6

(b)

Figure 10.1 (a) An undirected graph and (b) a directed graph.
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Graphs — Paths

= A path is a sequence of adjacent vertices.
= Length of a path = number of edges.
= Path from vto v = uis reachable from v.
= Simple path: All vertices are distinct.

= A path is a cycle if its starting and ending
vertices are the same.

= Simple cycle: All intermediate vertices are
distinct.




Simple path: Simple path:
Simple cycle: Simple cycle:
Non simple cycle: Non simple cycle:
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Figure 10.1 (a) An undirected graph and (b) a directed graph.




Graphs

= Connected graph: 3 path between any
pair.

= G'=(V',E") sub-graph of G=(V,E) if V'cV
and E'cE.

= Sub-graph of G induced by V’: Take all
edges of E connecting vertices of V'cV.

= Complete graph: Each pair of vertices
adjacent.

= Tree: connected acyclic graph.




Sub-graph:
Induced sub-graph:

(a)
Figure 10.1
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(a) An undirected graph and (b) a directed graph.
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Graph Representation

= Sparse graph (|E| much smaller than |V|?):

= Adjacency list representation.

= Dense graph:
» Adjacency matrix.

= For weighted graphs (V,E,w): weighted
adjacency list/matrix.
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Figure 10.2  An undirected graph and its adjacency matrix representation.

Undirected graph = symmetric adjacency matrix.
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Figure 10.3  An undirected graph and its adjacency list representation.
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Minimum Spanning Tree

= We consider undirected graphs.

= Spanning tree of (V,E) = sub-graph
= being a tree and
= containing all vertices V.

= Minimum spanning tree of (V,E,w) =
spanning tree with minimum weight.

= Example: minimum length of cable to
connect a set of computers.
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Figure 10.4 An undirected graph and its minimum spanning tree.
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Prim’s Algorithm

= Greedy algorithm:
= Select a vertex.

= Choose a new vertex and edge guaranteed to
be in a spanning tree of minimum cost.

= Continue until all vertices are selected.
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procedure PRIM_MST(V, E, w, r)

begin
Vi = {r} Vertices of minimum spanning tree.
dir] = 0;
forallve (V —Vr)do Weights from V; to V.

if edge (r, v) exists set d[v] := w(r, v);
else set dv] = 00

while V7 # V do

begin

10. select  find a vertex u such that d[u] := min{d[v]lv € (V — V')}
1. add Vi := Vr U {u};
12. update forallv e (V —Vr) do

13.
14.
15.

dlv] := min{d[v], wu, v)};
endwhile
end PRIM_MST

Algorithm 10.1  Prim's sequential minimum spanning tree algorithm.
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(a) Original graph
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(b) After the first edge has
been selected

(c) After the second edge
has been selected

a b ¢ d e f

df] [1]o]2[1]4]o]
a |0 1 3 ocooc 3

b1l 0 5 1 o

c |3 5 0 2 1 ~©

dloc 1l 2 0 4 o0

e looox 1 4 0 5

fl2 coocoox 5 0

a b ¢ d e f

df] |1fo]2]1]4]3]
a |0 1 3 oooc 3

b1 0 5 1 x

c |3 5 0 2 1 ~

dloc 1l 2 0 4 =
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(c) After the second edge
has been selected

vannanne
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(d) Final minimum a1 | abecdef
spanning tree l|0|2 |] ‘1|3|
a |0 1 3 oo 3

b1 0 5 1 o o0
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Prim’s Algorithm

= Complexity ©(n?).
= Cost of the minimum spanning tree:

= How to parallelize?
=« Iterative algorithm.
» Any d[v] may change after every loop.

> d[v]

veV

= But possible to run each iteration in parallel.
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iParallel Prim’s Algorithm

1-D block partitioning: V; per P..
For each iteration:
P, computes a local min di[u].
All-to-one reduction to P, to compute the global min.
One-to-all broadcast of u.
Local updates of d[v].

Every process needs a column of the adjacency
matrix to compute the update.
©(n%/p) space per process.
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Analysis

= The cost to select the minimum entry is
O(n/p + log p).

= The cost of a broadcast is O(log p).

= The cost of local update of the ¢ vector is
o(ryp).

= The parallel run-time per iteration is
O(rn/p + log p).

= The total parallel time (7 iterations) is
given by O(r?/p + n log p).
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Analysis

= Efficiency = Speedup/# of processes:
E=5/p=1/(1+0((p logp)/n).
= Maximal degree of concurrency = n.

= To be cost-optimal we can only use up to
nflogn processes., ~ Maxat n7/p =0(n log p),

ith bound p=0,
= Not very scalable. with bound p=0(n)

25

Keep cost optimality: p logp=0(n), logp+loglogp=0O(logp)=0O(logn) —
p=0(n/logn).

pTp=Ts+T, — To=0(pn logp)=O((p logp)?).

25



Single-Source Shortest Paths:
Dijkstra’s Algorithm

= For (V,E,w), find the shortest paths from a
vertex to all other vertices.
= Shortest path=minimum weight path.
= Algorithm for directed & undirected with non
negative weights.
= Similar to Prim’s algorithm.

= Prim: store d[u] minimum cost edge
connecting a vertex of V; to u.

= Dijkstra: store I[u] minimum cost to reach u
from s by a path.in, Vy. .
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Parallel formulation: Same as Prim'’s algorithm.

© NV e W~

— et e e WD)
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procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
begin
Vr == {s};
forallve (V —Vr)do
if (s, v) exists set/|v] := w(s, v);
else set /[v] := o0;
while V' # V do
begin
find a vertex u such that /[u] := min{/[v]jv € (V — V)};
Vi = Ve Ulu};
forallv e (V—Vy)do
[[v] := min{/[v], e} + wiw v)}
endwhile
end DIJKSTRA_SINGLE_SOURCE_SP

Algorithm 10.2  Dijkstra’s sequential single-source shortest paths algorithm.
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All-Pairs Shortest Paths

= For (V,E,w), find the shortest paths
between all pairs of vertices.

= Dijkstra’s algorithm: Execute the single-source

algorithm for n vertices — O(n3).
» Floyd’s algorithm.
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All-Pairs Shortest Paths —

Dijkstra — Parallel Formulation

= Source-partitioned formulation: Each

process hac a cat nf verticee and com

theUp to n processes. Solve in ©(/7).

ute

= No communication, E=1, but maximal degree

of concurrency = n. Poor scalability.
= Source-parallel formulation (p>n):

0,
Up to 2 processes, 72/ logn for cost-optimal,
in which case solve in ©(7 logn).

« In parallel: n single-source problems.
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Floyd’s Algorithm

= For any pair of vertices v;, v; € V, consider

all paths from v, to v; whose intermediate
vertices belong to the set {v,,v,,...,v,}.

= Let p, % (of weight d, W) be the minimum-

weight path among them.
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Floyd’s Algorithm

= If vertex v, is not in the shortest path from

v, to v;, then p;; = p, D),

p, (9 =p, ()
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Floyd’s Algorithm

= If v isin p; ), then we can break p;;®
into two paths - one from v; to v, and one
from v, to v; . Each of these paths uses
vertices from {v,,v,,...,Vi_1}-

Pi j(k)
d, ©=d; KD+d, kD
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Floyd’s Algorithm

= Recurrence equation:
g0 _ | WY) if k=0
U  min(d® P, d%Y +d&Y) if k21

= Length of shortest path from v; to v; =
d; (. Solution set = a matrix.
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iFond’s Algorithm

How to parallelize?

Lo N Sk LN

procedure FLOYD_ALL_PAIRS_SP(4)
begin
DO = 4.
for k :=1ton do
fori:=1tondo
for j :=1ton do

1

end FLOYD_A]:L_PAIRS_SP

O(n3)

Also works /n place.

ky . . (k=1) S(k=1)
d.f.—mm(d{.‘j .a’{.‘k +

k=1)Y.
. )

Algorithm 10.3  Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs
shortest paths of the graph G = (¥, E) with adjacency matrix A.
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iParalleI Formulation

= 2-D block mapping:
= Each of the p processes has a sub-matrix
(n/Vp)? and computes its D®),
= Processes need access to the corresponding k
row and column of D&k1),

= kth iteration: Each processes containing part of

the kth row sends it to the other processes in

the same column. Same for column broadcast

on rows.
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iZ-D Mapping

W

;.1

n

Jplanfaz

2.1y

(a)

1 n/\/p

!

S N A W VI
(=D 4L U =D

QL ju,
VB U

(b)

Figure 10.7 (a) Matrix D' distributed by 2-D block mapping into /P x /p subblocks, and (b)

the subblock of D) assigned to process 7 ;.
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Communication

k column k column
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Figure 10.8 (a) Communication patterns used in the 2-D block mapping. When computing f"i’
information must be sent to the highlighted process from two other processes along the same row
and column. (b) The row and column of /7 processes that contain the &™ row and column send
them along process columns and rows.
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Parallel Algorithm

hhWe -
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procedure FLOYD_2DBLOCK(D™)
begin

for k :=1ton do

begin

each process P ; that has a segment of the ™ row of D*=1;

broadcasts it to the P, ; processes;
each process P ; that has a segment of the k™ column of D=0,
broadcasts it to the F; . processes;
each process waits to receive the needed segments;
each process P; ; computes its part of the D*) matrix;
end '
end FLOYD_2DBLOCK

Algorithm 10.4 Floyd's parallel formulation using the 2-D block mapping. Py ; denotes all the
processes in the /™ column, and 7; . denotes all the processes in the /™ row. The matrix D' is
the adjacency matrix.
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;‘ Analysis
computation commuDicofion

n? "/
I'p= © (—) + O ( — logp) :
P NGE

= E=1/(1+O((v/p logp)/n).

= Cost optimal if up to O((n/logn)?)
processes.

= Possible to improve: pipelined 2-D block
mapping: No broadcast, send to
neighbour. Communication: ©(n), up to
O(n?) processes & cost optimal.
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All-Pairs Shortest Paths: Matrix
Multiplication Based Algorithm

= Multiplication of the weighted adjacency
matrix with itself — except that we replace
multiplications by additions, and additions
by minimizations.

= The result is a matrix that contains
shortest paths of length 2 between any
pair of nodes.

= It follows that 4” contains all shortest
paths.
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Transitive Closure

= Find out if any two vertices are connected.

= G*=(V,E*) where E*={(v,v;)|3 a path
from v, to v; in G}.

ol

o O
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Transitive Closure

= Start with D=(a;; or ).
= Apply one all-pairs shortest paths
algorithm.

= Solution:

o if d, | =oo

a _ .
7|1 ifd;>00ri=]

43

Also possible to modify Floyd’s algorithm by replacing + by logical or and min

by logical and.
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Connected Components

= Connected components of G=(V,E) are the

maximal disjoint sets C,,...,C, s.t. V=UCk
and u,v € C iff u reachable from v and v
reachable from u.

0‘0 0‘0 (®)

Figure 10.10 A graph with three connected components: {1, 2. 3. 4}, {5. 6, 7}, and {8, 9}.
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iDFS Based Algorithm

= DFS traversal of the graph — forest of
(DFS) spanning trees.
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(b)

Figure 10.11 Part (b) is a depth-first forest obtained from depth-first traversal of the graph in part
(a). Each of these trees is a connected component of the graph in part (a).
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Parallel Formulation

= Partition G into p sub-graphs. P; has
G=(V,E).

« Each P, computes the spanning forest of G.

= Merge the forests pair-wise.

= Each merge possible in O(n).
= Not described in the book — out of scope.

= Find if an edge of A has its vertices in B:
= no for all — union of 2 disjoint sets.
= yes for one — merge.
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S e Wb —

~J

Partition the adjacency matrix.
1-D partitioning in p stripes of n/p
consecutive rows.

Processor |

Processor 2
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iAnaIysis

local computation

— forest merging

- rmm— —

To= © <l> +O(nlogp)
p

= E=1/(1+0((p logp)/n).
= Up to O(n/logn) to be cost-optimal.
= Performance similar to Prim’s algorithm.
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