
1

Graph Algorithms
(Chapter 10)

Alexandre David
1.2.05

2

16-04-2008 Alexandre David, MVP'08 2

Today
Recall on graphs.
Minimum spanning tree (Prim’s algorithm).
Single-source shortest paths (Dijkstra’s
algorithm).
All-pair shortest paths (Floyd’s algorithm).
Connected components.

3

16-04-2008 Alexandre David, MVP'08 3

Graphs – Definition
A graph is a pair (V,E)

V finite set of vertices.
E finite set of edges.
e ∈ E is a pair (u,v) of vertices.
Ordered pair → directed graph.
Unordered pair → undirected graph.

4

16-04-2008 Alexandre David, MVP'08 4

edge

vertex

V=
E=

V=
E=

5

16-04-2008 Alexandre David, MVP'08 5

Graphs – Edges
Directed graph:

(u,v) ∈ E is incident from u and incident to v.
(u,v) ∈ E : vertex v is adjacent to u.

Undirected graph:
(u,v) ∈ E is incident on u and v.
(u,v) ∈ E : vertices u and v are adjacent to
each other.

6

16-04-2008 Alexandre David, MVP'08 6

4 adjacent to 6

7

16-04-2008 Alexandre David, MVP'08 7

Graphs – Paths
A path is a sequence of adjacent vertices.

Length of a path = number of edges.
Path from v to u ⇒ u is reachable from v.
Simple path: All vertices are distinct.
A path is a cycle if its starting and ending
vertices are the same.
Simple cycle: All intermediate vertices are
distinct.

8

16-04-2008 Alexandre David, MVP'08 8

Simple path:
Simple cycle:
Non simple cycle:

Simple path:
Simple cycle:
Non simple cycle:

9

16-04-2008 Alexandre David, MVP'08 9

Graphs
Connected graph: ∃ path between any
pair.
G’=(V’,E’) sub-graph of G=(V,E) if V’⊆V
and E’⊆E.
Sub-graph of G induced by V’: Take all
edges of E connecting vertices of V’⊆V.
Complete graph: Each pair of vertices
adjacent.
Tree: connected acyclic graph.

10

16-04-2008 Alexandre David, MVP'08 10

Sub-graph:
Induced sub-graph:

11

16-04-2008 Alexandre David, MVP'08 11

Graph Representation
Sparse graph (|E| much smaller than |V|2):

Adjacency list representation.

Dense graph:
Adjacency matrix.

For weighted graphs (V,E,w): weighted
adjacency list/matrix.

12

16-04-2008 Alexandre David, MVP'08 12

⎩
⎨
⎧ ∈

=
otherwise

Evvif
a ji

ji 0

),(1
,

Undirected graph ⇒ symmetric adjacency matrix.

|V|

|V|2 entries

13

16-04-2008 Alexandre David, MVP'08 13

|V|

|V|+|E| entries

14

16-04-2008 Alexandre David, MVP'08 14

Minimum Spanning Tree
We consider undirected graphs.
Spanning tree of (V,E) = sub-graph

being a tree and
containing all vertices V.

Minimum spanning tree of (V,E,w) =
spanning tree with minimum weight.
Example: minimum length of cable to
connect a set of computers.

15

16-04-2008 Alexandre David, MVP'08 15

Spanning Trees

16

16-04-2008 Alexandre David, MVP'08 16

Prim’s Algorithm
Greedy algorithm:

Select a vertex.
Choose a new vertex and edge guaranteed to
be in a spanning tree of minimum cost.
Continue until all vertices are selected.

17

16-04-2008 Alexandre David, MVP'08 17

Vertices of minimum spanning tree.

Weights from VT to V.

select

add
update

18

16-04-2008 Alexandre David, MVP'08 18

19

16-04-2008 Alexandre David, MVP'08 19

20

16-04-2008 Alexandre David, MVP'08 20

21

16-04-2008 Alexandre David, MVP'08 21

Prim’s Algorithm
Complexity Θ(n2).
Cost of the minimum spanning tree:

How to parallelize?
Iterative algorithm.
Any d[v] may change after every loop.
But possible to run each iteration in parallel.

∑
∈Vv

vd][

22

16-04-2008 Alexandre David, MVP'08 22

1-D Block Mapping

p processes
n vertices
n/p vertices per process

23

16-04-2008 Alexandre David, MVP'08 23

Parallel Prim’s Algorithm

1-D block partitioning: Vi per Pi.
For each iteration:

Pi computes a local min di[u].
All-to-one reduction to P0 to compute the global min.
One-to-all broadcast of u.
Local updates of d[v].

Every process needs a column of the adjacency
matrix to compute the update.
Θ(n2/p) space per process.

24

16-04-2008 Alexandre David, MVP'08 24

Analysis
The cost to select the minimum entry is
O(n/p + log p).
The cost of a broadcast is O(log p).
The cost of local update of the d vector is
O(n/p).
The parallel run-time per iteration is
O(n/p + log p).
The total parallel time (n iterations) is
given by O(n2/p + n log p).

25

16-04-2008 Alexandre David, MVP'08 25

Analysis
Efficiency = Speedup/# of processes:
E=S/p=1/(1+Θ((p logp)/n).
Maximal degree of concurrency = n.
To be cost-optimal we can only use up to
n/logn processes.
Not very scalable.

max at n2/p =Θ(n log p),
with bound p=O(n)

Keep cost optimality: p logp=O(n), logp+loglogp=O(logp)=O(logn) →
p=O(n/logn).
pTP=TS+T0 → T0=O(pn logp)=O((p logp)2).

26

16-04-2008 Alexandre David, MVP'08 26

Single-Source Shortest Paths:
Dijkstra’s Algorithm
For (V,E,w), find the shortest paths from a
vertex to all other vertices.

Shortest path=minimum weight path.
Algorithm for directed & undirected with non
negative weights.

Similar to Prim’s algorithm.
Prim: store d[u] minimum cost edge
connecting a vertex of VT to u.
Dijkstra: store l[u] minimum cost to reach u
from s by a path in VT.

27

16-04-2008 Alexandre David, MVP'08 27

Parallel formulation: Same as Prim’s algorithm.

28

16-04-2008 Alexandre David, MVP'08 28

All-Pairs Shortest Paths
For (V,E,w), find the shortest paths
between all pairs of vertices.

Dijkstra’s algorithm: Execute the single-source
algorithm for n vertices → Θ(n3).
Floyd’s algorithm.

29

16-04-2008 Alexandre David, MVP'08 29

All-Pairs Shortest Paths –
Dijkstra – Parallel Formulation
Source-partitioned formulation: Each
process has a set of vertices and compute
their shortest paths.

No communication, E=1, but maximal degree
of concurrency = n. Poor scalability.

Source-parallel formulation (p>n):
Partition the processes (p/n processes/subset),
each partition solves one single-source
problem (in parallel).
In parallel: n single-source problems.

Up to n processes. Solve in Θ(n2).

Up to n2 processes, n2/ logn for cost-optimal,
in which case solve in Θ(n logn).

30

16-04-2008 Alexandre David, MVP'08 30

Floyd’s Algorithm
For any pair of vertices vi, vj ∈ V, consider
all paths from vi to vj whose intermediate
vertices belong to the set {v1,v2,…,vk}.
Let pi,j

(k) (of weight di,j
(k)) be the minimum-

weight path among them.

1

2

3

5

4

6

7

8

ki

j
pi,j

(k)

31

16-04-2008 Alexandre David, MVP'08 31

Floyd’s Algorithm
If vertex vk is not in the shortest path from
vi to vj, then pi,j

(k) = pi,j
(k-1).

1

2

3

5

4

6

7

8

k
i

j

pi,j
(k)

k-1

=pi,j
(k-1)

32

16-04-2008 Alexandre David, MVP'08 32

Floyd’s Algorithm
If vk is in pi,j

(k), then we can break pi,j
(k)

into two paths - one from vi to vk and one
from vk to vj . Each of these paths uses
vertices from {v1,v2,…,vk-1}.

1

2

3

5

4

6

7

8

k
i

j
pi,j

(k)

di,j
(k)=di,k

(k-1)+dk,j
(k-1)

33

16-04-2008 Alexandre David, MVP'08 33

Floyd’s Algorithm
Recurrence equation:

Length of shortest path from vi to vj =
di,j

(n). Solution set = a matrix.

() ⎭
⎬
⎫

≥
=

⎪⎩

⎪
⎨
⎧

+
=

−−− 1
0

,min

),(
)1(

,
)1(

,
)1(

,

)(
, kif

kif
ddd

vvw
d

k
jk

k
ki

k
ji

jik
ji

34

16-04-2008 Alexandre David, MVP'08 34

Floyd’s Algorithm

Θ(n3)

Also works in place.

How to parallelize?

35

16-04-2008 Alexandre David, MVP'08 35

Parallel Formulation
2-D block mapping:

Each of the p processes has a sub-matrix
(n/√p)2 and computes its D(k).
Processes need access to the corresponding k
row and column of D(k-1).
kth iteration: Each processes containing part of
the kth row sends it to the other processes in
the same column. Same for column broadcast
on rows.

36

16-04-2008 Alexandre David, MVP'08 36

2-D Mapping

n/√p

37

16-04-2008 Alexandre David, MVP'08 37

Communication

38

16-04-2008 Alexandre David, MVP'08 38

Parallel Algorithm

39

16-04-2008 Alexandre David, MVP'08 39

Analysis

E=1/(1+Θ((√p logp)/n).
Cost optimal if up to O((n/ logn)2)
processes.
Possible to improve: pipelined 2-D block
mapping: No broadcast, send to
neighbour. Communication: Θ(n), up to
O(n2) processes & cost optimal.

40

16-04-2008 Alexandre David, MVP'08 40

All-Pairs Shortest Paths: Matrix
Multiplication Based Algorithm
Multiplication of the weighted adjacency
matrix with itself – except that we replace
multiplications by additions, and additions
by minimizations.
The result is a matrix that contains
shortest paths of length 2 between any
pair of nodes.
It follows that An contains all shortest
paths.

41

16-04-2008 Alexandre David, MVP'08 41

Serial algorithm not
optimal but we can
use n3/logn processes
to run in O(log2n).

42

16-04-2008 Alexandre David, MVP'08 42

Transitive Closure
Find out if any two vertices are connected.
G*=(V,E*) where E*={(vi,vj)|∃ a path
from vi to vj in G}.

43

16-04-2008 Alexandre David, MVP'08 43

Transitive Closure
Start with D=(ai,j or ∞).
Apply one all-pairs shortest paths
algorithm.
Solution:

⎪⎩

⎪
⎨
⎧

=>

∞=∞
=

jiordif

dif
a

ji

ji
ji 01 ,

,*
,

Also possible to modify Floyd’s algorithm by replacing + by logical or and min
by logical and.

44

16-04-2008 Alexandre David, MVP'08 44

Connected Components
Connected components of G=(V,E) are the

maximal disjoint sets C1,…,Ck s.t. V=UCk
and u,v ∈ Ci iff u reachable from v and v
reachable from u.

45

16-04-2008 Alexandre David, MVP'08 45

DFS Based Algorithm
DFS traversal of the graph → forest of
(DFS) spanning trees.

46

16-04-2008 Alexandre David, MVP'08 46

47

16-04-2008 Alexandre David, MVP'08 47

Parallel Formulation
Partition G into p sub-graphs. Pi has
Gi=(V,Ei).

Each Pi computes the spanning forest of Gi.
Merge the forests pair-wise.

Each merge possible in Θ(n).
Not described in the book – out of scope.
Find if an edge of A has its vertices in B:

no for all → union of 2 disjoint sets.
yes for one → merge.

48

16-04-2008 Alexandre David, MVP'08 48

Partition the adjacency matrix.
1-D partitioning in p stripes of n/p
consecutive rows.

49

16-04-2008 Alexandre David, MVP'08 49

P1

P2

50

16-04-2008 Alexandre David, MVP'08 50

Analysis

E=1/(1+Θ((p logp)/n).
Up to O(n/ logn) to be cost-optimal.
Performance similar to Prim’s algorithm.

