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iSorting
Problem

Arrange an unordered collection of
elements into monotonically increasing
(or decreasing) order.
Let S =<q,,a;,...,0.
Sort Sinto S' = <a;,a,',...,a,> such that
a'<af forlci<jen
and S' is a permutation of S.

The elements to sort (actually used for comparisons) are also called the keys.



Recall on Comparison Based
iSorting Algorithms

Bubble sort  +—— o(m?)
Selection sort

(n) - Insertion sort+—— O(r?)
Q(n logn) Quick sort
Merge sort o(nlogn)
Heap sort
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You should know these complexities from a previous course on algorithms.



Characteristics of Sorting
Algorithms

= In-place sorting: No need for additional
memory (or only constant size).

= Stable sorting: Ordered elements keep
their original relative position.

= Internal sorting: Elements fit in process
memory.

= External sorting: Elements are on auxiliary
storage.

We assume internal sorting is possible.



Fundamental Distinction

= Comparison based sorting:
« Compare-exchange of pairs of elements.

= Lower bound is Q(nlogn) (proof based on
decision trees).

= Merge & heap-sort are optimal.
= Non-comparison based sorting:
= Use information on the element to sort.
= Lower bound is Q(n).
» Counting & radix-sort are optimal.

We assume comparison based sorting is used.



Issues in Parallel Sorting

= Where to store input & output?
= One process or distributed?
= Enumeration of processes used to distribute
output.
= How to compare?
= How many elements per process?

= As many processes as element = poor
performance because of inter-process
communication.




iParalleI Compare-Exchange

@y ———— aj aj.a; aj,a;  min{a;, a;) max{a; ., a ;)
Step | Step 2 Step 3

Figure 9.1 A parallel compare-exchange operation. Processes 7; and 7; send their elements to
each other. Process P; keeps min{a;, a;}, and P; keeps max{a;, a;}.

Communication cost: t,+t,.
Comparison cost much cheaper = communication
time dominates.




iBIocks of Elements Per Process

n/p elements per process

IO IO EEE nelements
Blocks: A, <= A} = .. <A,
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iCompare-SpIit

For large blocks: ©(n/p)

Exchange: O(¢,+¢t,/1/p) - o5
([ =—=
@ ® 7
Step 1 Step 2
Merge: O(n/p) Split: O(n/p)
2o ]sopo[ufiu  [r[2]e[[s[ofofulialrs|  []2[e]7]s] BREER
P, P, P P;
Step 3 Step 4




Sorting Networks

= Mostly of theoretical interest.

= Key idea: Perform many comparisons in
parallel.

= Key elements:
» Comparators: 2 inputs, 2 outputs.

= Network architecture: Comparators arranged
in columns, each performing a permutation.

= Speed proportional to the depth.
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iCom parators

x" = min{x, y) x" = minf{x, v}
X — L X ——
y — I y —
¥ = max{x, v} v = max{x, ¥}
(a)
x" = max{x, y} x" = max{x, y}
X —_—— X
y — A y
V' = min{x, v} ' = min{x, v}
(b)

Figure 9.3 A schematic representation of comparators: (a) an increasing comparator, and (b) a
decreasing comparator.
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iSorting Networks

Columns of comparators

e

1 M
]

Input wires

Interconnection network
Output wires

/
\

T e T

Figure 9.4 A typical sorting network. Every sorting network is made up of a series of columns,
and each column contains a number of comparators connected in parallel.
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iBitonic Sequence

Definition

A bitonic sequence is a sequence of
elements <qgy,q,...,a,> S.1.

1.3i,0<i<n-1st.<qy,..0> is
monotonically increasing and
<Qj,1,--,0,.1> iS monotonically
decreasing,

2.or there is a cyclic shift of indices
so that 1) is satisfied.
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Example: <1,2,4,7,6,0> & <8,9,2,1,0,4> are bitonic sequences.

13



Bitonic Sort

= Rearrange a bitonic sequence to be sorted.
= Divide & conquer type of algorithm (similar
to quicksort) using bitonic splits.
= Sorting a bitonic sequence using bitonic splits
= bitonic merge.
» But we need a bitonic sequence...

14

14



<Qp,41,.--,.8p/2-1.8n/2.8n/241,-+ 8Qp-1?

|

S;<s,
s; & s, bitonic!

$; = <min{ao,an/2},min{gl,\qﬂi/zﬂ},...,min{an/z_l,an_1}>

S; = <maX{Go,0n/2},m0XW3-1,Gn_1}>
\ bi'

15

And in fact the procedure works even if the original sequence needs a cyclic
shift to look like this particular case.
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g g logn stages
Wires
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Cost: O(logn) obviously.



Bitonic Sort

= Use the bitonic network to merge bitonic
sequences of increasing length... starting
from 2, etc.

= Bitonic network is a component.
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| Bitonic Sort

logn stages

Wires

0000 — — _-— _—
wor —| D BM[2] [ | - | |
0010 — e BM[Z] — BM[4] _— _—
0011 - 1 1 1
o100 — || | & BM[8] ||
oy | DBM[2] [ | | ||

Simulated on a serial comput

Cost: O(log?n).

er: O(nlog2n).

sM[16]

1001
1010
1011
1100
1101
1110
1111

T FIVE[ =]

@b BM[4]
© BM[2] [_|
® BM[2] ||
|| © BM[4]
© BM[2] [_|

O BM[S]

[T TT]

Not cost optimal compared to the optimal serial algorithm.
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Mapping to Hypercubes & Mesh
— Idea

= Communication intensive, so special care
for the mapping.

= How are the input wires paired?

= Pairs have their labels differing by only one bit

— mannina to hvpercube straiahtforward.
. For :But.not efficient & not scalable

solut Pecause the sequential algorithm
To= is; suboptimalz

\ -7 7 \ 7 7T

()

€ss.

= Block of elements: sort locally (n/p logr/p) &
use bitonic merge = cost optimal.
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Hypercube: Neighbors differ with each other by one bit.
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iBubee Sort

procedure BUBBLE_SORT(n)
begin
for i := n-1 downto 1 do
for j:=1toido o)
compare_exchange(a;,a;.):

end

= Difficult to parallelize as it is because it is
inherently sequential.

20

It is difficult to sort n elements in time logn using n processes (cost optimal
w.r.t. the best serial algorithm in n logn) but it is easy to parallelize other (less
efficient) algorithms.



iOdd-Even Transposition Sort

1.  procedure ODD-EVEN(n)
2. begin
3 fori:=1tondo e(,72)
4. begin
5. if / 1s odd then
6. for j:=0ton/2 — 1do (a1,3,),(a5,4)...
7. (‘I)ﬂ?j?a."(.’—L’Ii.'f?(m';{if(ﬂg_;_i.| il
8. if / 1s even then
9. for j :=1ton/2 —1do (a,,33),(a4,3s)...
10. mﬂ:pr.?re:—cx::}'rfmge(ag_ Fediiptl
11. end for
12. end ODD-EVEN
Algorithm 9.3  Sequential odd-even transposition sort algorithm.
07-04-2008 Alexandre David, MVP'08
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Write speedup & efficiency to find the bound on p but you can also see it with

TP-

Odd-Even Transposition Sort

= Easy to parallelize!
= O(n) if 1 process/element.

= Not cost optimal but use fewer processes, an
optimal local sort, and compare-splits:

T, = @[% log %} +0(n)+6(n)

Cost optimal for p = O(logn)
but not scalable (few processes).

local sori tion
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Odd-Even Transposition Sort

= Parallel formulation cost-optimal for
p=0(log n).

= Isoefficiency function: W=0(p2P).
Exponential(p) = poorly scalable.
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Improvement: Shellsort

= 2 phases:
= Move elements on longer distances.

= Odd-even transposition but stop when no
change.

= Idea: Put quickly elements near their final

position to reduce the number of iterations

of odd-even transposition.
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Figure 9.14  An example of the first phase of parallel shellsort on an eight-process array.
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Quicksort

= Average complexity: O(nlogn).
= But very efficient in practice.
= Average “robust”.
= Low overhead and very simple.
= Divide & conquer algorithm:
« Partition A[q..r] into A[g..s] < A[s+1..r].
= Recursively sort sub-arrays.
= Subtlety: How to partition?

27
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17.  end QUICKSORT

1. procedure QUICKSORT (4.¢.r) (

2. begin l

3 if ¢ < r then

4, begin

5. [e]:= 41q1; 3|12/1(3]8
6. — §i=gq;

i — fori:=¢g+1tordo

8. if A[i] < x then I ” n n 1
10. s:=s5+1;

11. swap(A[s], A[i]);

12. end if

13. swap(Al[q], A[s]); 112]3 _
14, QUICKSORT (A4.4q.5);

15. QUICKSORT (4,5 +1,r);

1|2 [515 4 [ s [F]e]

Algorithm 9.5  The sequential quicksort algorithm.

07-04-2008 Alexandre David, MVP'08

Hoare partitioning is better. Check in your algorithm course.
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o BRG]
BUG

(b) |1 3|5‘8‘4 3 -J,v| |:| Pivot
) | 1 | 2 | 3 | 3 ‘4 ‘ 5 Ig | 7 | |:| Final position

2

(

(s

(d) |1|2|3|3|4|5|?|8|

o [lafs]safs[7]s]

Figure 9.15 Example of the quicksort algorithm sorting a sequence of size » = 8.

07-04-2008 Alexandre David, MVP'08

29

29



Parallel Quicksort

= Simple version:

= Recursive decomposition with one process per

recursive call.

= Not cost optimal: Lower bound = 7 (initial
partitioning).

= Best we can do: Use O(logn) processes.

= Need to parallelize the partitioning step.

30
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Parallel Quicksort for CRCW
PRAM

= See execution of quicksort as constructing
a binary tree.
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Text & algorithm 9.5:

A[p..s] £ x < A[s+1..q].
Figures & algorithm 9.6:
A[p..s] < x £ A[s+1..q].

Figure 9.16 A binary tree generated by the execution of the quicksort algorithm. Each level of the
tree represents a different array-partitioning iteration. If pivot selection is optimal, then the height of
the tree is @ (log ), which is also the number of iterations.

07-04-2008 Alexandre David, MVP'08 32
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procedure BUILD_TREE (A[l...n])
begin
for each process / do
begin
only one succeeds
parent; = root,
lefichild|i] = rightchild|i] == n + 1;
end for
repeat for each process i # root do
begin
if (Ali .
Ui, Ali]<Alparent]
begin
lefichild|parent;] == i, ‘
if i = lefichild| parent;] then exit
else parent; := lefichild| parent;];
end for
else
begin
rightchild| parent;] :=i;
if i =rightchild|parent;] then exit
else parent; = rightchild|parent;];
end else
end repeat
end BUILD_TREE

_ent;) then
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This algorithm does not correspond exactly to the serial version. Time for

partitioning: O(1).
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root= 1
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Each step: ©(1). Average height: O(logn).
This is cost-optimal — but it is only a model.




Parallel Quicksort — Shared
Address (Realistic)

= Same idea but remove contention:
= Choose the pivot & broadcast it.

» Each process rearranges its block of elements
locally.

» Global rearrangement of the blocks.

= When the blocks reach a certain size, local sort
is used.
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j’}” 5 ‘JJI ;)2 5 ‘.U.* !)4

6 6]19] 4 u12]5]8]

10]15] 9] 3
pivot=7

(7 [13]18] 2 [17] 1 [14]20

Py :

l18[13[ 1 [17]14[20] 6 [10[15] 9 |3 |4 [19]16]5 [12]11] 8|

HE

l Prefix Sum l l Prefix Sum l

Lof2]s]a]6]7] Lof2]s[s]iw0]n]

l7]2]1]6]3]4]5s]1s]13]17]14]20]10]15] 9 [19]16] 12| 11] 8 |

0 1 2 3 4 5 [ 7 3 9 10 11 12 13 14 15 16 17 18 19

pivot selection

after local
rearrangement

after global
rearrangement
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Cost

= Scalability determined by time to broadcast
the pivot & compute the prefix-sums.

= Cost optimal.

loc gL sort c:rrqxfpli‘rs
7 7 72 I
Tp =0 <— log —) + 06 (—logp) + O(log? p).
p p p
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MPI Formulation of Quicksort

= Arrays must be explicitly distributed.
= Two phases:

» Local partition smaller/larger than pivot.

= Determine who will sort the sub-arrays.
= And send the sub-arrays to the right process.
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Final Word

= Pivot selection is very important.
= Affects performance.
= Bad pivot means idle processes.
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