| Sorting (Chapter 9)

Alexandre David
1.2.05

iSorting
Problem

Arrange an unordered collection of
elements into monotonically increasing
(or decreasing) order.
Let S =<q,,a;,...,0.
Sort Sinto S' = <a;,a,',...,a,> such that
a'<af forlci<jen
and S' is a permutation of S.

The elements to sort (actually used for comparisons) are also called the keys.

Recall on Comparison Based
iSorting Algorithms

Bubble sort +—— o(m?)
Selection sort

(n) - Insertion sort+—— O(r?)
Q(n logn) Quick sort
Merge sort o(nlogn)
Heap sort

3

You should know these complexities from a previous course on algorithms.

Characteristics of Sorting
Algorithms

= In-place sorting: No need for additional
memory (or only constant size).

= Stable sorting: Ordered elements keep
their original relative position.

= Internal sorting: Elements fit in process
memory.

= External sorting: Elements are on auxiliary
storage.

We assume internal sorting is possible.

Fundamental Distinction

= Comparison based sorting:
« Compare-exchange of pairs of elements.

= Lower bound is Q(nlogn) (proof based on
decision trees).

= Merge & heap-sort are optimal.
= Non-comparison based sorting:
= Use information on the element to sort.
= Lower bound is Q(n).
» Counting & radix-sort are optimal.

We assume comparison based sorting is used.

Issues in Parallel Sorting

= Where to store input & output?
= One process or distributed?
= Enumeration of processes used to distribute
output.
= How to compare?
= How many elements per process?

= As many processes as element = poor
performance because of inter-process
communication.

iParalleI Compare-Exchange

@y ———— aj aj.a; aj,a; min{a;, a;) max{a; ., a ;)
Step | Step 2 Step 3

Figure 9.1 A parallel compare-exchange operation. Processes 7; and 7; send their elements to
each other. Process P; keeps min{a;, a;}, and P; keeps max{a;, a;}.

Communication cost: t,+t,.
Comparison cost much cheaper = communication
time dominates.

iBIocks of Elements Per Process

n/p elements per process

IO IO EEE nelements
Blocks: A, <= A} = .. <A,

07-04-2008 Alexandre David, MVP'08

iCompare-SpIit

For large blocks: ©(n/p)

Exchange: O(¢,+¢t,/1/p) - o5
([=—=
@ ® 7
Step 1 Step 2
Merge: O(n/p) Split: O(n/p)
2o]sopo[ufiu [r[2]e[[s[ofofulialrs| []2[e]7]s] BREER
P, P, P P;
Step 3 Step 4

Sorting Networks

= Mostly of theoretical interest.

= Key idea: Perform many comparisons in
parallel.

= Key elements:
» Comparators: 2 inputs, 2 outputs.

= Network architecture: Comparators arranged
in columns, each performing a permutation.

= Speed proportional to the depth.

10

10

iCom parators

x" = min{x, y) x" = minf{x, v}
X — L X ——
y — I y —
¥ = max{x, v} v = max{x, ¥}
(a)
x" = max{x, y} x" = max{x, y}
X —_—— X
y — A y
V' = min{x, v} ' = min{x, v}
(b)

Figure 9.3 A schematic representation of comparators: (a) an increasing comparator, and (b) a
decreasing comparator.

11

iSorting Networks

Columns of comparators

e

1 M
]

Input wires

Interconnection network
Output wires

/
\

T e T

Figure 9.4 A typical sorting network. Every sorting network is made up of a series of columns,
and each column contains a number of comparators connected in parallel.

12

12

iBitonic Sequence

Definition

A bitonic sequence is a sequence of
elements <qgy,q,...,a,> S.1.

1.3i,0<i<n-1st.<qy,..0> is
monotonically increasing and
<Qj,1,--,0,.1> iS monotonically
decreasing,

2.or there is a cyclic shift of indices
so that 1) is satisfied.

13

Example: <1,2,4,7,6,0> & <8,9,2,1,0,4> are bitonic sequences.

13

Bitonic Sort

= Rearrange a bitonic sequence to be sorted.
= Divide & conquer type of algorithm (similar
to quicksort) using bitonic splits.
= Sorting a bitonic sequence using bitonic splits
= bitonic merge.
» But we need a bitonic sequence...

14

14

<Qp,41,.--,.8p/2-1.8n/2.8n/241,-+ 8Qp-1?

|

S;<s,
s; & s, bitonic!

$; = <min{ao,an/2},min{gl,\qﬂi/zﬂ},...,min{an/z_l,an_1}>

S; = <maX{Go,0n/2},m0XW3-1,Gn_1}>
\ bi'

15

And in fact the procedure works even if the original sequence needs a cyclic
shift to look like this particular case.

15

g g logn stages
Wires
0000 S = s 2 D 2 0 :
ol 5 5 2 5 0 3
0010 8 8 s 8 ¢ & 5 .
0011 ? . & & 0 157 s -
T 10 " 10 5 10 10 2 5
12 12 12 9 10 =
0101 q 4 4 "~
14 14 14 14 12 :
0110 v & & ' (@)
20 N 0 L 12 u 9
o111 B b 3
95 95 (—DBM[n] 18 TRES
1000 o
1001 90 90 N 23 . 20 20 Q-
35 23 :
1010 60 4 60 O 18 |4 35 q | g
2 15)]
-— 40 40 ¢ 20 & 23 s 5 i
T 35 35 95 |, 60 40
23 3 H
ol 2 4 2 4 90 q 40 60 i
T 18 18 60 95 N 90
0 20 40 90 95 v
111 ok £ 1

Cost: O(logn) obviously.

Bitonic Sort

= Use the bitonic network to merge bitonic
sequences of increasing length... starting
from 2, etc.

= Bitonic network is a component.

17

17

| Bitonic Sort

logn stages

Wires

0000 — — _-— _—
wor —| D BM[2] [| - | |
0010 — e BM[Z] — BM[4] _— _—
0011 - 1 1 1
o100 — || | & BM[8] ||
oy | DBM[2] [| | ||

Simulated on a serial comput

Cost: O(log?n).

er: O(nlog2n).

sM[16]

1001
1010
1011
1100
1101
1110
1111

T FIVE[=]

@b BM[4]
© BM[2] [_|
® BM[2] ||
|| © BM[4]
© BM[2] [_|

O BM[S]

[T TT]

Not cost optimal compared to the optimal serial algorithm.

18

Mapping to Hypercubes & Mesh
— Idea

= Communication intensive, so special care
for the mapping.

= How are the input wires paired?

= Pairs have their labels differing by only one bit

— mannina to hvpercube straiahtforward.
. For :But.not efficient & not scalable

solut Pecause the sequential algorithm
To= is; suboptimalz

\ -7 7 \ 7 7T

()

€ss.

= Block of elements: sort locally (n/p logr/p) &
use bitonic merge = cost optimal.

19

Hypercube: Neighbors differ with each other by one bit.

19

iBubee Sort

procedure BUBBLE_SORT(n)
begin
for i := n-1 downto 1 do
for j:=1toido o)
compare_exchange(a;,a;.):

end

= Difficult to parallelize as it is because it is
inherently sequential.

20

It is difficult to sort n elements in time logn using n processes (cost optimal
w.r.t. the best serial algorithm in n logn) but it is easy to parallelize other (less
efficient) algorithms.

iOdd-Even Transposition Sort

1. procedure ODD-EVEN(n)
2. begin
3 fori:=1tondo e(,72)
4. begin
5. if / 1s odd then
6. for j:=0ton/2 — 1do (a1,3,),(a5,4)...
7. (‘I)ﬂ?j?a."(.’—L’Ii.'f?(m';{if(ﬂg_;_i.| il
8. if / 1s even then
9. for j :=1ton/2 —1do (a,,33),(a4,3s)...
10. mﬂ:pr.?re:—cx::}'rfmge(ag_ Fediiptl
11. end for
12. end ODD-EVEN
Algorithm 9.3 Sequential odd-even transposition sort algorithm.
07-04-2008 Alexandre David, MVP'08

21

21

07-04-2008

(%]

Unsorted

ta

[¥]

[}

ta

8 5
|
8 3
L]
5 8
|
5 |
|
| 5
|
3 4
|
3 4
|
3 4
L]
3 4
Sorted

Phase | (odd)

Phase 2 (even)

Phase 3 (odd)

Phase 4 (even)

Phase 5 (odd)

Phase 6 (even)

Phase 7 (odd)

Phase 8 (even)

22

22

Write speedup & efficiency to find the bound on p but you can also see it with

TP-

Odd-Even Transposition Sort

= Easy to parallelize!
= O(n) if 1 process/element.

= Not cost optimal but use fewer processes, an
optimal local sort, and compare-splits:

T, = @[% log %} +0(n)+6(n)

Cost optimal for p = O(logn)
but not scalable (few processes).

local sori tion

23

23

Odd-Even Transposition Sort

= Parallel formulation cost-optimal for
p=0(log n).

= Isoefficiency function: W=0(p2P).
Exponential(p) = poorly scalable.

24

24

Improvement: Shellsort

= 2 phases:
= Move elements on longer distances.

= Odd-even transposition but stop when no
change.

= Idea: Put quickly elements near their final

position to reduce the number of iterations

of odd-even transposition.

25

25

O=—
NO‘@ Ng]
-&'—O* IS

58D S
2 1 3 7

Figure 9.14 An example of the first phase of parallel shellsort on an eight-process array.
26

o O

26

Quicksort

= Average complexity: O(nlogn).
= But very efficient in practice.
= Average “robust”.
= Low overhead and very simple.
= Divide & conquer algorithm:
« Partition A[q..r] into A[g..s] < A[s+1..r].
= Recursively sort sub-arrays.
= Subtlety: How to partition?

27

27

17. end QUICKSORT

1. procedure QUICKSORT (4.¢.r) (

2. begin l

3 if ¢ < r then

4, begin

5. [e]:= 41q1; 3|12/1(3]8
6. — §i=gq;

i — fori:=¢g+1tordo

8. if A[i] < x then I ” n n 1
10. s:=s5+1;

11. swap(A[s], A[i]);

12. end if

13. swap(Al[q], A[s]); 112]3 _
14, QUICKSORT (A4.4q.5);

15. QUICKSORT (4,5 +1,r);

1|2 [515 4 [s [F]e]

Algorithm 9.5 The sequential quicksort algorithm.

07-04-2008 Alexandre David, MVP'08

Hoare partitioning is better. Check in your algorithm course.

28

o BRG]
BUG

(b) |1 3|5‘8‘4 3 -J,v| |:| Pivot
) | 1 | 2 | 3 | 3 ‘4 ‘ 5 Ig | 7 | |:| Final position

2

(

(s

(d) |1|2|3|3|4|5|?|8|

o [lafs]safs[7]s]

Figure 9.15 Example of the quicksort algorithm sorting a sequence of size » = 8.

07-04-2008 Alexandre David, MVP'08

29

29

Parallel Quicksort

= Simple version:

= Recursive decomposition with one process per

recursive call.

= Not cost optimal: Lower bound = 7 (initial
partitioning).

= Best we can do: Use O(logn) processes.

= Need to parallelize the partitioning step.

30

30

Parallel Quicksort for CRCW
PRAM

= See execution of quicksort as constructing
a binary tree.

31

31

Text & algorithm 9.5:

A[p..s] £ x < A[s+1..q].
Figures & algorithm 9.6:
A[p..s] < x £ A[s+1..q].

Figure 9.16 A binary tree generated by the execution of the quicksort algorithm. Each level of the
tree represents a different array-partitioning iteration. If pivot selection is optimal, then the height of
the tree is @ (log), which is also the number of iterations.

07-04-2008 Alexandre David, MVP'08 32

32

i~ ol U e

[S S S S]
>

13.
14.
15.
16.
17.
18.

™)
<

W =

procedure BUILD_TREE (A[l...n])
begin
for each process / do
begin
only one succeeds
parent; = root,
lefichild|i] = rightchild|i] == n + 1;
end for
repeat for each process i # root do
begin
if (Ali .
Ui, Ali]<Alparent]
begin
lefichild|parent;] == i, ‘
if i = lefichild| parent;] then exit
else parent; := lefichild| parent;];
end for
else
begin
rightchild| parent;] :=i;
if i =rightchild|parent;] then exit
else parent; = rightchild|parent;];
end else
end repeat
end BUILD_TREE

_ent;) then

33

This algorithm does not correspond exactly to the serial version. Time for

partitioning: O(1).

33

root= 1

@ 33.;.- Bfonkon 73
OGO ccuaébcc

2

6

34

\/ ® \® ©® \G&G/ @®
OI @) 2] XD @5 @] ©l4] I3 @7
OIGIOI0 000\\090\\00

Each step: ©(1). Average height: O(logn).
This is cost-optimal — but it is only a model.

Parallel Quicksort — Shared
Address (Realistic)

= Same idea but remove contention:
= Choose the pivot & broadcast it.

» Each process rearranges its block of elements
locally.

» Global rearrangement of the blocks.

= When the blocks reach a certain size, local sort
is used.

36

36

07-04-2008

First Step

Third Step

Fourth Step

Socond Step

Py M Py ;] Py
CEEEEEEhEE R R e]
pivor=1
I L S N N M. N
ELRIEEI e s lole]s [F[a]wlwelsiz]u]s] el
|11 I 2 I D D D I D 3 I e
S m oA BB
Tl2fr|a)3 alse[1317|1420 0|05 9 | 19[16(12{11] & pivot selection
[IzTiTele] [ai7[azofww[1s] » 1o a6 12[] 5]
pivor=$ pivar=17
I P Y S
|00 6 3 I Y R 2 D 3 I e
LT TaTs] 7 Lo el w]as] = Jus] 3 [is[m]15] nerslobal
s L P : P r
|||z[![||sl7 3 |-1||.1]|7|m|u|';||n.||_‘||||u}1u|m||-a| pivot selection
pivot=11
B gh| B n n
INRBDADE D REDEDNE DD DD .-
I
1] o [s [i2]u]s]ir]a]is EI afer global
1
5] e
afier local

wioe]s|ijnfiir
1

Py M

" " ”y

P :
[TzTsTals s 7 s ToTwlulizlis]saus]se[srfis[1s]0] sotusion
| | Ll 1

37

37

j’}” 5 ‘JJI ;)2 5 ‘.U.* !)4

6 6]19] 4 u12]5]8]

10]15] 9] 3
pivot=7

(7 [13]18] 2 [17] 1 [14]20

Py :

l18[13[1 [17]14[20] 6 [10[15] 9 |3 |4 [19]16]5 [12]11] 8|

HE

l Prefix Sum l l Prefix Sum l

Lof2]s]a]6]7] Lof2]s[s]iw0]n]

l7]2]1]6]3]4]5s]1s]13]17]14]20]10]15] 9 [19]16] 12| 11] 8 |

0 1 2 3 4 5 [7 3 9 10 11 12 13 14 15 16 17 18 19

pivot selection

after local
rearrangement

after global
rearrangement

38

Cost

= Scalability determined by time to broadcast
the pivot & compute the prefix-sums.

= Cost optimal.

loc gL sort c:rrqxfpli‘rs
7 7 72 I
Tp =0 <— log —) + 06 (—logp) + O(log? p).
p p p

39

39

MPI Formulation of Quicksort

= Arrays must be explicitly distributed.
= Two phases:

» Local partition smaller/larger than pivot.

= Determine who will sort the sub-arrays.
= And send the sub-arrays to the right process.

40

40

Final Word

= Pivot selection is very important.
= Affects performance.
= Bad pivot means idle processes.

41

41

