
1

Sorting (Chapter 9)

Alexandre David
1.2.05

2

07-04-2008 Alexandre David, MVP'08 2

Sorting

Arrange an unordered collection of
elements into monotonically increasing
(or decreasing) order.
Let S = <a1,a2,…,an>.
Sort S into S’ = <a1’,a2’,…,an’> such that

ai’ ≤ aj’ for 1 ≤ i ≤ j ≤ n
and S’ is a permutation of S.

Problem

The elements to sort (actually used for comparisons) are also called the keys.

3

07-04-2008 Alexandre David, MVP'08 3

Recall on Comparison Based
Sorting Algorithms

Bubble sort
Selection sort
Insertion sort

Quick sort
Merge sort
Heap sort

O(n2)

Θ(n2)

Ω(n)

Θ(n logn)
Ω(n logn)

You should know these complexities from a previous course on algorithms.

4

07-04-2008 Alexandre David, MVP'08 4

Characteristics of Sorting
Algorithms
In-place sorting: No need for additional
memory (or only constant size).
Stable sorting: Ordered elements keep
their original relative position.
Internal sorting: Elements fit in process
memory.
External sorting: Elements are on auxiliary
storage.

We assume internal sorting is possible.

5

07-04-2008 Alexandre David, MVP'08 5

Fundamental Distinction
Comparison based sorting:

Compare-exchange of pairs of elements.
Lower bound is Ω(n logn) (proof based on
decision trees).
Merge & heap-sort are optimal.

Non-comparison based sorting:
Use information on the element to sort.
Lower bound is Ω(n).
Counting & radix-sort are optimal.

We assume comparison based sorting is used.

6

07-04-2008 Alexandre David, MVP'08 6

Issues in Parallel Sorting
Where to store input & output?

One process or distributed?
Enumeration of processes used to distribute
output.

How to compare?
How many elements per process?
As many processes as element ⇒ poor
performance because of inter-process
communication.

7

07-04-2008 Alexandre David, MVP'08 7

Parallel Compare-Exchange

Communication cost: ts+tw.
Comparison cost much cheaper ⇒ communication
time dominates.

8

07-04-2008 Alexandre David, MVP'08 8

Blocks of Elements Per Process

P0 P1 Pp-1…

n elements

n/p elements per process

Blocks: A0 ≤ A1 ≤ … ≤ Ap-1

9

07-04-2008 Alexandre David, MVP'08 9

Compare-Split

Exchange: Θ(ts+twn/p)

Merge: Θ(n/p) Split: O(n/p)

For large blocks: Θ(n/p)

10

07-04-2008 Alexandre David, MVP'08 10

Sorting Networks
Mostly of theoretical interest.
Key idea: Perform many comparisons in
parallel.
Key elements:

Comparators: 2 inputs, 2 outputs.
Network architecture: Comparators arranged
in columns, each performing a permutation.
Speed proportional to the depth.

11

07-04-2008 Alexandre David, MVP'08 11

Comparators

12

07-04-2008 Alexandre David, MVP'08 12

Sorting Networks

13

07-04-2008 Alexandre David, MVP'08 13

Bitonic Sequence

A bitonic sequence is a sequence of
elements <a0,a1,…,an> s.t.

1. ∃i, 0 ≤ i ≤ n-1 s.t. <a0,…,ai> is
monotonically increasing and
<ai+1,…,an-1> is monotonically
decreasing,

2.or there is a cyclic shift of indices
so that 1) is satisfied.

Definition

Example: <1,2,4,7,6,0> & <8,9,2,1,0,4> are bitonic sequences.

14

07-04-2008 Alexandre David, MVP'08 14

Bitonic Sort
Rearrange a bitonic sequence to be sorted.
Divide & conquer type of algorithm (similar
to quicksort) using bitonic splits.

Sorting a bitonic sequence using bitonic splits
= bitonic merge.
But we need a bitonic sequence…

15

07-04-2008 Alexandre David, MVP'08 15

Bitonic Split

<a0,a1,…,an/2-1,an/2,an/2+1,…,an-1>

s1 = <min{a0,an/2},min{a1,an/2+1},…,min{an/2-1,an-1}>
bi

s2 = <max{a0,an/2},max{a1,an/2+1},…,max{an/2-1,an-1}>
bi’

s2
s1

s1 ≤ s2
s1 & s2 bitonic!

And in fact the procedure works even if the original sequence needs a cyclic
shift to look like this particular case.

16

07-04-2008 Alexandre David, MVP'08 16

Bitonic Merging Network logn stages
n/2 com

parators

⊕BM[n]

Cost: Θ(logn) obviously.

17

07-04-2008 Alexandre David, MVP'08 17

Bitonic Sort
Use the bitonic network to merge bitonic
sequences of increasing length… starting
from 2, etc.
Bitonic network is a component.

18

07-04-2008 Alexandre David, MVP'08 18

Bitonic Sort
logn stages

Cost: O(log2n).
Simulated on a serial computer: O(n log2n).

Not cost optimal compared to the optimal serial algorithm.

19

07-04-2008 Alexandre David, MVP'08 19

Mapping to Hypercubes & Mesh
– Idea
Communication intensive, so special care
for the mapping.
How are the input wires paired?

Pairs have their labels differing by only one bit
⇒ mapping to hypercube straightforward.
For a mesh lower connectivity, several
solutions but worse than the hypercube
TP=Θ(log2n)+Θ(√n) for 1 element/process.
Block of elements: sort locally (n/p logn/p) &
use bitonic merge ⇒ cost optimal.

But not efficient & not scalable
because the sequential algorithm
is suboptimal.

Hypercube: Neighbors differ with each other by one bit.

20

07-04-2008 Alexandre David, MVP'08 20

Bubble Sort

Difficult to parallelize as it is because it is
inherently sequential.

procedure BUBBLE_SORT(n)
begin

for i := n-1 downto 1 do
for j := 1 to i do

compare_exchange(aj,aj+1);
end

Θ(n2)

It is difficult to sort n elements in time logn using n processes (cost optimal
w.r.t. the best serial algorithm in n logn) but it is easy to parallelize other (less
efficient) algorithms.

21

07-04-2008 Alexandre David, MVP'08 21

Odd-Even Transposition Sort

(a1,a2),(a3,a4)…

(a2,a3),(a4,a5)…

Θ(n2)

22

07-04-2008 Alexandre David, MVP'08 22

23

07-04-2008 Alexandre David, MVP'08 23

Odd-Even Transposition Sort
Easy to parallelize!
Θ(n) if 1 process/element.
Not cost optimal but use fewer processes, an
optimal local sort, and compare-splits:

() ()nn
p
n

p
nTP Θ+Θ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ= log

local sort (optimal) + comparisons + communication
Cost optimal for p = O(logn)
but not scalable (few processes).

Write speedup & efficiency to find the bound on p but you can also see it with
TP.

24

07-04-2008 Alexandre David, MVP'08 24

Odd-Even Transposition Sort
Parallel formulation cost-optimal for
p=O(log n).
Isoefficiency function: W=Θ(p2p).
Exponential(p) ⇒ poorly scalable.

25

07-04-2008 Alexandre David, MVP'08 25

Improvement: Shellsort
2 phases:

Move elements on longer distances.
Odd-even transposition but stop when no
change.

Idea: Put quickly elements near their final
position to reduce the number of iterations
of odd-even transposition.

26

07-04-2008 Alexandre David, MVP'08 26

2 3

1 3 7 62

27

07-04-2008 Alexandre David, MVP'08 27

Quicksort
Average complexity: O(n logn).

But very efficient in practice.
Average “robust”.
Low overhead and very simple.

Divide & conquer algorithm:
Partition A[q..r] into A[q..s] ≤ A[s+1..r].
Recursively sort sub-arrays.
Subtlety: How to partition?

28

07-04-2008 Alexandre David, MVP'08 28

2 1 5 8 4 3 73

q r

3 5

4 752 13 3 87 83

4 52 1 3 7 83 51 73

42 3 851 73 4 5

Hoare partitioning is better. Check in your algorithm course.

29

07-04-2008 Alexandre David, MVP'08 29

BUG

30

07-04-2008 Alexandre David, MVP'08 30

Parallel Quicksort
Simple version:

Recursive decomposition with one process per
recursive call.
Not cost optimal: Lower bound = n (initial
partitioning).
Best we can do: Use O(logn) processes.
Need to parallelize the partitioning step.

31

07-04-2008 Alexandre David, MVP'08 31

Parallel Quicksort for CRCW
PRAM
See execution of quicksort as constructing
a binary tree.

33,2,1 7,4,5,8

3 71,2 5,4 8

1

2

5

4

8

32

07-04-2008 Alexandre David, MVP'08 32

BUG

Text & algorithm 9.5:
A[p..s] ≤ x < A[s+1..q].
Figures & algorithm 9.6:
A[p..s] < x ≤ A[s+1..q].

33

07-04-2008 Alexandre David, MVP'08 33

only one succeeds

A[i]≤A[parenti]

This algorithm does not correspond exactly to the serial version. Time for
partitioning: O(1).

34

07-04-2008 Alexandre David, MVP'08 34

13 2 5 8 4 3 71 2 3 4 5 6 7 8

root=1

1 1 1 1 1 1 1 1

31

2 6

22 2 666

2 6

35

07-04-2008 Alexandre David, MVP'08 35

13 2 5 8 4 3 71 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1

31

2 6

2 2 666

2 6

2 4

3 7 5

3 7 5

35 5

1 3 8

4

8

5

7

Each step: Θ(1). Average height: Θ(logn).
This is cost-optimal – but it is only a model.

36

07-04-2008 Alexandre David, MVP'08 36

Parallel Quicksort – Shared
Address (Realistic)
Same idea but remove contention:

Choose the pivot & broadcast it.
Each process rearranges its block of elements
locally.
Global rearrangement of the blocks.
When the blocks reach a certain size, local sort
is used.

37

07-04-2008 Alexandre David, MVP'08 37

38

07-04-2008 Alexandre David, MVP'08 38

Bug: Fig
doesn’t
match the
text.

39

07-04-2008 Alexandre David, MVP'08 39

Cost
Scalability determined by time to broadcast
the pivot & compute the prefix-sums.
Cost optimal.

40

07-04-2008 Alexandre David, MVP'08 40

MPI Formulation of Quicksort
Arrays must be explicitly distributed.
Two phases:

Local partition smaller/larger than pivot.
Determine who will sort the sub-arrays.

And send the sub-arrays to the right process.

41

07-04-2008 Alexandre David, MVP'08 41

Final Word
Pivot selection is very important.
Affects performance.
Bad pivot means idle processes.

