
1

Sorting (Chapter 9)

Alexandre David
1.2.05



2

07-04-2008 Alexandre David, MVP'08 2

Sorting

Arrange an unordered collection of
elements into monotonically increasing
(or decreasing) order.
Let S = <a1,a2,…,an>.
Sort S into S’ = <a1’,a2’,…,an’> such that

ai’ ≤ aj’ for 1 ≤ i ≤ j ≤ n
and S’ is a permutation of S.

Problem

The elements to sort (actually used for comparisons) are also called the keys.
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Recall on Comparison Based 
Sorting Algorithms

Bubble sort
Selection sort
Insertion sort

Quick sort
Merge sort
Heap sort

O(n2 )

Θ(n2 )

Ω(n)

Θ(n logn)
Ω(n logn)

You should know these complexities from a previous course on algorithms.
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Characteristics of Sorting 
Algorithms
In-place sorting: No need for additional 
memory (or only constant size).
Stable sorting: Ordered elements keep 
their original relative position.
Internal sorting: Elements fit in process 
memory.
External sorting: Elements are on auxiliary 
storage.

We assume internal sorting is possible.
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Fundamental Distinction
Comparison based sorting:

Compare-exchange of pairs of elements.
Lower bound is Ω(n logn) (proof based on 
decision trees).
Merge & heap-sort are optimal.

Non-comparison based sorting:
Use information on the element to sort.
Lower bound is Ω(n).
Counting & radix-sort are optimal.

We assume comparison based sorting is used.
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Issues in Parallel Sorting
Where to store input & output?

One process or distributed?
Enumeration of processes used to distribute 
output.

How to compare?
How many elements per process?
As many processes as element ⇒ poor 
performance because of inter-process 
communication.
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Parallel Compare-Exchange

Communication cost: ts+tw.
Comparison cost much cheaper ⇒ communication
time dominates.



8

07-04-2008 Alexandre David, MVP'08 8

Blocks of Elements Per Process

P0 P1 Pp-1…

n elements

n/p elements per process

Blocks:   A0 ≤ A1 ≤ … ≤ Ap-1
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Compare-Split

Exchange: Θ(ts+twn/p)

Merge: Θ(n/p) Split: O(n/p)

For large blocks: Θ(n/p)
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Sorting Networks
Mostly of theoretical interest.
Key idea: Perform many comparisons in 
parallel.
Key elements:

Comparators: 2 inputs, 2 outputs.
Network architecture: Comparators arranged 
in columns, each performing a permutation.
Speed proportional to the depth.
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Comparators
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Sorting Networks
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Bitonic Sequence

A bitonic sequence is a sequence of
elements <a0,a1,…,an> s.t.

1. ∃i, 0 ≤ i ≤ n-1 s.t. <a0,…,ai> is
monotonically increasing and
<ai+1,…,an-1> is monotonically
decreasing,

2.or there is a cyclic shift of indices
so that 1) is satisfied.

Definition

Example: <1,2,4,7,6,0> & <8,9,2,1,0,4> are bitonic sequences.
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Bitonic Sort
Rearrange a bitonic sequence to be sorted.
Divide & conquer type of algorithm (similar 
to quicksort) using bitonic splits.

Sorting a bitonic sequence using bitonic splits 
= bitonic merge.
But we need a bitonic sequence…
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Bitonic Split

<a0,a1,…,an/2-1,an/2,an/2+1,…,an-1>

s1 = <min{a0,an/2},min{a1,an/2+1},…,min{an/2-1,an-1}>
bi

s2 = <max{a0,an/2},max{a1,an/2+1},…,max{an/2-1,an-1}>
bi’

s2
s1

s1 ≤ s2
s1 & s2 bitonic!

And in fact the procedure works even if the original sequence needs a cyclic 
shift to look like this particular case.
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Bitonic Merging Network logn stages
n/2 com

parators

⊕BM[n]

Cost: Θ(logn) obviously.
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Bitonic Sort
Use the bitonic network to merge bitonic 
sequences of increasing length… starting 
from 2, etc.
Bitonic network is a component.
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Bitonic Sort
logn stages

Cost: O(log2n).
Simulated on a serial computer: O(n log2n).

Not cost optimal compared to the optimal serial algorithm.
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Mapping to Hypercubes & Mesh 
– Idea
Communication intensive, so special care 
for the mapping.
How are the input wires paired?

Pairs have their labels differing by only one bit 
⇒ mapping to hypercube straightforward.
For a mesh lower connectivity, several 
solutions but worse than the hypercube
TP=Θ(log2n)+Θ(√n) for 1 element/process.
Block of elements: sort locally (n/p logn/p) & 
use bitonic merge ⇒ cost optimal.

But not efficient & not scalable
because the sequential algorithm
is suboptimal.

Hypercube: Neighbors differ with each other by one bit.
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Bubble Sort

Difficult to parallelize as it is because it is 
inherently sequential.

procedure BUBBLE_SORT(n)
begin

for i := n-1 downto 1 do
for j := 1 to i do

compare_exchange(aj,aj+1);
end

Θ(n2 )

It is difficult to sort n elements in time logn using n processes (cost optimal 
w.r.t. the best serial algorithm in n logn) but it is easy to parallelize other (less 
efficient) algorithms.
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Odd-Even Transposition Sort

(a1,a2),(a3,a4)…

(a2,a3),(a4,a5)…

Θ(n2 )
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Odd-Even Transposition Sort
Easy to parallelize!
Θ(n) if 1 process/element.
Not cost optimal but use fewer processes, an 
optimal local sort, and compare-splits:

( ) ( )nn
p
n

p
nTP Θ+Θ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ= log

local sort (optimal) + comparisons + communication
Cost optimal for p = O(logn)
but not scalable (few processes).

Write speedup & efficiency to find the bound on p but you can also see it with 
TP.
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Odd-Even Transposition Sort
Parallel formulation cost-optimal for
p=O( log n).
Isoefficiency function: W=Θ(p2p). 
Exponential(p) ⇒ poorly scalable.
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Improvement: Shellsort
2 phases:

Move elements on longer distances.
Odd-even transposition but stop when no 
change.

Idea: Put quickly elements near their final 
position to reduce the number of iterations 
of odd-even transposition.
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2 3

1 3 7 62
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Quicksort
Average complexity: O(n logn).

But very efficient in practice.
Average “robust”.
Low overhead and very simple.

Divide & conquer algorithm:
Partition A[q..r] into A[q..s] ≤ A[s+1..r].
Recursively sort sub-arrays.
Subtlety: How to partition?
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2 1 5 8 4 3 73

q r

3 5

4 752 13 3 87 83

4 52 1 3 7 83 51 73

42 3 851 73 4 5

Hoare partitioning is better. Check in your algorithm course.



29

07-04-2008 Alexandre David, MVP'08 29

BUG
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Parallel Quicksort
Simple version:

Recursive decomposition with one process per 
recursive call.
Not cost optimal: Lower bound = n (initial 
partitioning).
Best we can do: Use O(logn) processes.
Need to parallelize the partitioning step.
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Parallel Quicksort for CRCW 
PRAM
See execution of quicksort as constructing 
a binary tree.

33,2,1 7,4,5,8

3 71,2 5,4 8

1

2

5

4

8
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BUG

Text & algorithm 9.5:
A[p..s] ≤ x < A[s+1..q].
Figures & algorithm 9.6:
A[p..s] < x ≤ A[s+1..q].
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only one succeeds

A[i]≤A[parenti]

This algorithm does not correspond exactly to the serial version. Time for 
partitioning: O(1).
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13 2 5 8 4 3 71 2 3 4 5 6 7 8

root=1

1 1 1 1 1 1 1 1

31

2 6

22 2 666

2 6
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13 2 5 8 4 3 71 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1

31

2 6

2 2 666

2 6

2 4

3 7 5

3 7 5

35 5

1 3 8

4

8

5

7

Each step: Θ(1). Average height: Θ(logn).
This is cost-optimal – but it is only a model.
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Parallel Quicksort – Shared 
Address (Realistic)
Same idea but remove contention:

Choose the pivot & broadcast it.
Each process rearranges its block of elements 
locally.
Global rearrangement of the blocks.
When the blocks reach a certain size, local sort 
is used.
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Bug: Fig
doesn’t
match the
text.
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Cost
Scalability determined by time to broadcast 
the pivot & compute the prefix-sums.
Cost optimal.
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MPI Formulation of Quicksort
Arrays must be explicitly distributed.
Two phases:

Local partition smaller/larger than pivot.
Determine who will sort the sub-arrays.

And send the sub-arrays to the right process.
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Final Word
Pivot selection is very important.
Affects performance.
Bad pivot means idle processes.


