
1

Analytical Modeling of Parallel 
Programs (Chapter 5)

Alexandre David
1.2.05



2

02-04-2008 Alexandre David, MVP'08 2

Topic Overview
Sources of overhead in parallel programs.
Performance metrics for parallel systems.
Effect of granularity on performance.
Scalability of parallel systems.
Minimum execution time and minimum 
cost-optimal execution time.
Asymptotic analysis of parallel programs.
Other scalability metrics.



3

02-04-2008 Alexandre David, MVP'08 3

Analytical Modeling – Basics
A sequential algorithm is evaluated by its 
runtime in function of its input size.

O(f(n)), Ω(f(n)), Θ(f(n)).

The asymptotic runtime is independent of 
the platform. Analysis “at a constant 
factor”.
A parallel algorithm has more parameters.

Which ones??

Reminder O-notation, Ω-notation, Θ-notation.



4

02-04-2008 Alexandre David, MVP'08 4

Analytical Modeling – Basics
A parallel algorithm is evaluated by its 
runtime in function of

the input size,
the number of processors,
the communication parameters.

Which performance measures?
Compare to which (serial version) 
baseline?

Note: The underlying RAM model may play a role, keep in mind that they are 
equivalent and the more powerful models can be emulated by the weaker 
ones in polynomial time.
Parallel system = parallel algorithm + underlying platform, which we analyze.
Performance measures: time obvious, but how does it scale?



5

02-04-2008 Alexandre David, MVP'08 5

Sources of Overhead in Parallel 
Programs
Overheads: wasted computation, 
communication, idling, contention.

Inter-process interaction.
Load imbalance.
Dependencies.

Shouldn’t my program run twice
faster if I use two processors?

Naïve question

Different sources of overhead: We have already seen them. Wasted
computation = excess computation (speculative execution for example, or 
duplicate work).



6

02-04-2008 Alexandre David, MVP'08 6

Performance Metrics for Parallel 
Systems
Execution time = time elapsed between

beginning and end of execution on a 
sequential computer.
beginning of first processor and end of the last
processor on a parallel computer. TP.

Intuitive for sequential programs but be careful for parallel programs.
Execution time denoted TP.



7

02-04-2008 Alexandre David, MVP'08 7

Performance Metrics for Parallel 
Systems
Total parallel overhead.

Total time collectively spent by all processing 
elements = pTP.
Time spent doing useful work (serial time) = 
TS.
Overhead function: TO = pTP-TS.
General function, contains all kinds of 
overheads.

Quantitative way of measuring overheads, this metric contains all kinds of 
overheads.



8

02-04-2008 Alexandre David, MVP'08 8

Performance Metrics for Parallel 
Systems
What is the benefit of parallelism?

Speedup of course… let’s define it.

Speedup S = TS/TP.
Example: Compute the sum of n elements.

Serial algorithm Θ(n).
Parallel algorithm Θ(logn).
Speedup = Θ(n/logn).

Baseline (TS) is for the best sequential 
algorithm available.

Other?

And by the way speedup is one benefit, you can find others like simpler 
hardware architectures (several simple CPUs better than one big complex) 
and heat issues.
Adding 2 elements and communication time are constants.
Question: Compare to what? Which TS to take? All the sequential algorithm 
are not equally parallelizable and do not perform the same.



9

02-04-2008 Alexandre David, MVP'08 9

Speedup
Theoretically, speedup can never exceed 
p. If > p, then you found a better 
sequential algorithm… Best: TP=TS/p.
In practice, super-linear speedup is 
observed. How?

Serial algorithm does more work?
Effects from caches.
Exploratory decompositions.

Serial algorithm may do more work compared to its parallel counterpart due to 
features in parallel hardware.
Caches: aggregate amount of caches is larger, so “more data can fit in the 
cache”, if the data is partitioned appropriately.



10

02-04-2008 Alexandre David, MVP'08 10

Speedup – Example

1 processing element:
14tc.
2 processing elements:
5tc.
Speedup: 2.8.

Depth-first Search

The works performed by the serial and the parallel algorithms are different. If 
we simulate 2 processes on the same processing element then we get a 
better serial algorithm for this instance of the problem but we cannot 
generalize it to all instances. Here the work done by the different algorithms 
depends on the input, i.e., the location of the solution in the search tree.



11

02-04-2008 Alexandre David, MVP'08 11

Performance Metrics
Efficiency E=S/p.

Measure time spent in doing useful work.
Previous sum example: E = Θ(1/logn).

Cost C=pTP.
A.k.a. work or processor-time product.
Note: E=TS/C.
Cost optimal if E is a constant.

Example: Compute the sum of n elements.
Efficiency = Θ(1/logn).

Speedup/number of processing elements. Ideally it is 1 with S = p.
Comment for 1/logn: efficiency (and speedup too) goes down with n. If the 
problem size increases you win less by using more processors.
Check yourself edge detection example in the book.
Cost = parallel runtime * number of processing elements = total time spent for 
all processing elements.
C is a constant = TS and TP have the same asymptotic growth function (at a 
constant factor).
Related to previous lecture on Brent’s scheduling principle.



12

02-04-2008 Alexandre David, MVP'08 12

Effect of Granularity on 
Performance
Scaling down: To use fewer processing 
elements than the maximum possible.
Naïve way to scale down:

Assign the work of n/p processing element to 
every processing element.

Computation increases by n/p.
Communication growth ≤ n/p.

If a parallel system with n processing elements 
is cost optimal, then it is still cost optimal with 
p.

If it is not cost optimal, it may
still not be cost optimal after the
granularity increase.

Communication growth bounded if the mapping is appropriate.
Recall Brent’s scheduling algorithm: Re-schedule tasks on processes. It 
doesn’t do miracles, it’s only a re-scheduling algorithm.
Reason for improvement in increasing the granularity (coarse grained vs. fine 
grained): Decrease of global communication (instead of growing with n, it 
should grow with n/p) because tasks mapped on the same process 
communicate together without overhead.



13

02-04-2008 Alexandre David, MVP'08 13

Adding n Numbers – Bad Way

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

0 1 2 3



14

02-04-2008 Alexandre David, MVP'08 14

Adding n Numbers – Bad Way

12+13

8+9

4+5

0+1

14+15

10+11

6+7

2+3

0 1 2 3



15

02-04-2008 Alexandre David, MVP'08 15

Adding n Numbers – Bad Way

12+13+14+15

8+9+10+11

4+5+6+7

0+1+2+3

0 1 2 3

+

+

+

Bad way: T=Θ((n/p)logp)

Incrementing the granularity does not improve compared to logn. We need to 
distribute better.



16

02-04-2008 Alexandre David, MVP'08 16

Adding n Numbers – Good Way

3

2

1

0

7

6

5

4

11

10

9

8

15

14

13

12

0 1 2 3

+

+

+

+

+

+

+

+

+

+

+

+



17

02-04-2008 Alexandre David, MVP'08 17

Adding n Numbers – Good Way

0+1+2+3 4+5+6+7 8+9+10+11 12+13+14+15

0 1 2 3

Much less communication. T=Θ(n/p +logp).

Is it optimal? As long as n=Ω(plogp), the cost is Θ(n), which is the same as 
the serial runtime.



18

02-04-2008 Alexandre David, MVP'08 18

Scalability of Parallel Systems
In practice: Develop and test on small 
systems with small problems.
Problem: What happens for the real large 
problems on large systems?

Difficult to extrapolate results.



19

02-04-2008 Alexandre David, MVP'08 19

Problem with Extrapolation

Problem: It’s always like this and it’s always difficult to predict. You can fix the 
size of the problem and vary the number of processors, it will be similar.



20

02-04-2008 Alexandre David, MVP'08 20

Scaling Characteristics of 
Parallel Programs
Rewrite efficiency (E):

What does it tell us?

S
Sp

p

S

T
TE

TTpT

pT
T

p
SE

0
0

1

1

+
=⇒

⎪
⎩

⎪
⎨

⎧

+=

==

?
Note: T0=f(p) increasing.

Note: The total overhead T0 is an increasing function of p. So E decreases in 
function of p. Every program has some serial component that will limit 
efficiency: idling = (p-1)*t, increases in function of p. So it is at least linear in 
function of p.
Size fixed, TS fixed, if p increases, E decreases.
Number of processors fixed, T0 fixed, if size increases, E increases.



21

02-04-2008 Alexandre David, MVP'08 21

Example: Adding Numbers

n
ppp

SE

p
p
n

nS

p
p
nTP

log21

1

log2

log2

+
==⇒

+
=⇒

+= If count sum+
communication
(both 1 unit).

Since TS=n here, you can see the overhead.
0.80: We can keep the same efficiency if we increase the problem size and 
the number of processors.



22

02-04-2008 Alexandre David, MVP'08 22

Speedup

Fix n, efficiency decreases when p increases.
Fix p, efficiency increases when n increases.
Consequence of Amdahl’s law (exercise 5.1).



23

02-04-2008 Alexandre David, MVP'08 23

Amdahl’s Law (5.1)
If a problem of size W has a serial 
component WS, then S≤W/WS for any p.

S=W/TP=W/(WS+(W-WS)/p)
(W-WS)/p→0 when p increases. No matter 
how large p is, we have the bound S≤W/WS.



24

02-04-2008 Alexandre David, MVP'08 24

Scalable Parallel System
Can maintain its efficiency constant when 
increasing the number of processors and 
the size of the problem.
In many cases T0=f(TS,p) and grows sub-
linearly with TS. It can be possible to 
increase p and TS and keep E constant.
Scalability measures the ability to increase 
speedup in function of p.

Scalability: ability to use efficiently increasing processing power.



25

02-04-2008 Alexandre David, MVP'08 25

Cost-Optimality
Cost optimal parallel systems have 
efficiency Θ(1).
Scalability and cost-optimality are linked.
Adding number example: becomes cost-
optimal when n=Ω(p logp).



26

02-04-2008 Alexandre David, MVP'08 26

Scalable System
Efficiency can be kept constant when

the number of processors increases and
the problem size increases.

At which rate the problem size should 
increase with the number of processors?

The rate determines the degree of scalability.

In complexity, problem size = size of the 
input. Here = number of basic operations 
to solve the problem. Noted W (~TS).

Fast?
Slow?

?

?
Not input?

Note on the increase of the rate: the slower the better.
Motivation for change of definition: When doubling the problem size we wish 
to double the amount of computation. However, doubling the input size has 
very different impact on the amount of computations depending on the kind of 
algorithm you have.
Number of basic operations in the best sequential algorithm.
W=TS of the fastest known algorithm to solve the problem.



27

02-04-2008 Alexandre David, MVP'08 27

Rewrite Formulas

Parallel execution time

Speedup

Efficiency

W=TS



28

02-04-2008 Alexandre David, MVP'08 28

Isoefficiency Function
For scalable systems efficiency can be kept 
constant if T0/W is kept constant.

For a target E

Keep this constant

Isoefficiency function

W=KT0(W,p)How to increase work in function of
p to keep the same efficiency (iso)?

What it means: The isoefficiency function determines the ease with which a 
parallel system can maintain its efficiency in function of the number of 
processors. A small function means that small increments of the problem size 
are enough (to compensate the increase of p), i.e., the system is scalable. A 
large function means the problem size must be incremented dramatically to 
compensate p, i.e., the system is poorly scalable.
Unscalable system do not have an isoefficiency function.
Isoefficiency function is in function of p.



29

02-04-2008 Alexandre David, MVP'08 29

Example
Adding number: We saw that T0=2p logp.
We get W=K 2p logp.
If we increate p to p’, the problem size 
must be increased by (p’ logp’ )/(p logp) to 
keep the same efficiency.

Increase p by p’/p.
Increase n by (p’ logp’ )/(p logp).

Here the overhead depends on p only but in general it depends on n as well.
For more complex expressions of T0, decompose and solve individually each 
term, and keep the asymptotically dominant term for the isoefficiency.



30

02-04-2008 Alexandre David, MVP'08 30

Example

Isoefficiency = Θ(p3).



31

02-04-2008 Alexandre David, MVP'08 31

Why?
After isoefficiency analysis, we can test our 
parallel program with few processors and 
then predict what will happen for larger 
systems.



32

02-04-2008 Alexandre David, MVP'08 32

Link to Cost-Optimality
A parallel system is cost-optimal iff

pTP=Θ(W).

A parallel system is cost-optimal iff
its overhead (T0) does not exceed
(asymptotically) the problem size.

Recall for cost-optimality. We saw this previously for the example of adding 
numbers.



33

02-04-2008 Alexandre David, MVP'08 33

Lower Bounds
For a problem consisting of W units of 
work, p ≤ W processors can be used 
optimally.
W=Ω(p) is the lower bound.
For a degree of concurrency C(W),
p ≤ C(W) ≤ W.

C(W)=Θ(W) for optimality (necessary 
condition).

Degree of concurrency (chapter 5) = average degree of concurrency (chapter 
3).
Optimal if W=Θ(p). If C(W)<Θ(W) (order of magnitude) then not optimal.



34

02-04-2008 Alexandre David, MVP'08 34

Example
Gaussian elimination: W=Θ(n3).

But eliminate n variables consecutively with 
Θ(n2) operations → C(W) = O(n2) = O(W2/3).
Use all the processors: C(W)=Θ(p) →
W=Ω(p3/2).

Isoefficiency function not optimal here.



35

02-04-2008 Alexandre David, MVP'08 35

Minimum Execution Time
If TP in function of p, we want its 
minimum. Find p0 s.t. dTP/dp=0.
Adding n numbers: TP=n/p+2 logp.
→ p0=n/2.
→ TP

min=2 logn.
Fastest but not necessary cost-optimal.

Often what we are interested in = minimum execution time.



36

02-04-2008 Alexandre David, MVP'08 36

Cost-Optimal Minimum 
Execution Time
If we solve cost-optimally, what is the 
minimum execution time?
We saw that if isoefficiency function = 
Θ(f(p)) then a problem of size W can be 
solved optimally iff p=Ω(f-1(W)).
Cost-optimal system: TP=Θ(W/p)
→ TP

cost_opt=Ω(W/f-1(W)).



37

02-04-2008 Alexandre David, MVP'08 37

Example: Adding Numbers
Isoefficiency function f(p)=Θ(p logp).
W=n=f(p)=p logp → logn=logp + loglogp.
We have approximately p=n/logn=f-1(n).
TP

cost_opt=Ω(W/f-1(W))
=Ω(n / (n/logn)) = Ω(logn).
TP=Θ(n/p+logp)=Θ(logn+log(n/logn))
=Θ(2logn-loglogn)= Θ(logn).

For this example TP
cost_opt= Θ(TP

min).

Equation 5.5 should be used, not 5.2.
In general it is possible to have TP

cost_opt> Θ(TP
min).



38

02-04-2008 Alexandre David, MVP'08 38

Remark
If p0 > C(W) then its value is meaningless. 
TP

min is obtained for p=C(W).



39

02-04-2008 Alexandre David, MVP'08 39

Asymptotic Analysis of Parallel 
Programs

Best?



40

02-04-2008 Alexandre David, MVP'08 40

Other Scalability Metrics
Scaled speedup: speedup when problem 
size increases linearly in function of p.

Motivation: constraints such as memory linear 
in function of p.
Time and memory constrained.

The constraints link p and n.


