
1

Pthread Synchronization
Patterns

Alexandre David
1.2.05

31-03-2008 Alexandre David, MVP'08 2

Creating + Running a Thread

pthread_create

…

pthread_join

…

pthread_exit

Main program Thread function

31-03-2008 Alexandre David, MVP'08 3

Mutex-Lock

Main program Thread

pthread_mutex_init

…

pthread_mutex_destroy

pthread_mutex_lock
<critical section
as small as possible>
pthread_mutex_unlock



2

31-03-2008 Alexandre David, MVP'08 4

Mutex-Try-Lock

Main program Thread

pthread_mutex_init

…

pthread_mutex_destroy

if pthread_mutex_trylock
<pospone work
do something else>

else
<critical section
as small as possible>
pthread_mutex_unlock

end

31-03-2008 Alexandre David, MVP'08 5

Condition Variables & Monitors

Monitor

Condition variable

enter & test

success

failure

signaled – re-enter & test

pthread_cond_wait

pthread_cond_signal

pthread_mutex_lock

pthread_mutex_unlock

31-03-2008 Alexandre David, MVP'08 6

Condition Variables

Main program

pthread_mutex_init
pthread_cond_init
…
pthread_mutex_destroy
pthread_cond_destroy

Thread: Wait for a condition.

pthread_mutex_lock
while !condition do

pthread_cond_wait
done
<critical section
as small as possible>
pthread_mutex_unlock

pthread_mutex_lock
<critical section
as small as possible>
pthread_cond_signal
pthread_mutex_unlock

Thread: 
Make a condition
become true.



3

31-03-2008 Alexandre David, MVP'08 7

Spin-Locks
Mutex:

Threads block until the lock is acquired.
Blocked threads are idle and need to wake up.

Spin-locks:
Threads spin until the lock is acquired.
Blocked threads are not idle!
Better for quick access of small critical sections 
with low contention.

31-03-2008 Alexandre David, MVP'08 8

Pthread Spin Locks
Calls:

pthread_spin_init(pthread_spinlock_t*, int)
pthread_spin_destroy(pthread_spinlock_t*)

pthread_spin_lock(pthread_spinlock_t*)
pthread_spin_trylock(pthread_spinlock_t*)
pthread_spin_unlock(pthead_spinlock_t*)

Not related to condition variables because 
threads do not wait and are not woken up!

31-03-2008 Alexandre David, MVP'08 9

Semaphores (see PSS)
Special counter

inc & dec atomic
no access to its value
wait for counter > 0 & dec
inc & signal a blocked thread/process.

Initial counter
if == 0, useful for synchronizing.
if == n (> 0), useful for allowing at most n
threads/processes in a critical section.



4

31-03-2008 Alexandre David, MVP'08 10

Semaphores
#include <semaphore.h>

Calls
sem_init(semt_t*, int, unsigned int value)
sem_destroy(sem_t*)

sem_wait(sem_t*)
sem_trywait(sem_t*)
sem_timedwait(sem_t*, const struct timespec*)

sem_post(sem_t*)

31-03-2008 Alexandre David, MVP'08 11

Producer-Consumers

Semaphore M

Semaphore S

Shared
data

Producer
do

…
sem_wait(S)
write(&data)
sem_post(M)

loop

Consumer
do

…
sem_wait(M);
if hasData(&data)

read(&data)
sem_post(M)

else
sem_post(S)

loop

Initial value: 0

Initial value: 1

31-03-2008 Alexandre David, MVP'08 12

Application to our Model-Checker

Spin-locks on queues.
Semaphores for synchronization:

producer-consumer scheme!
Careful with races to detect termination.

Atomic: modify the queue & keep track of blocked 
threads with a flag.



5

31-03-2008 Alexandre David, MVP'08 13

Advanced: Futex
Futex: Fast userspace locking system call.

Wait for a value at a given address to change.
Wake up anyone waiting on an address.

Low-level call usually used to implement locks.
Minix specific, available under Linux.


