
1

Principle Of Parallel Algorithm
Design (cont.)

Alexandre David
1.2.05

2

03-03-2008 Alexandre David, MVP'08 2

Chapter 3 cont.
Characteristics of Tasks and Interactions
(3.3).
Mapping Techniques for Load Balancing
(3.4).
Methods for Containing Interaction
Overhead (3.5).
Parallel Algorithm Models (3.6).

3

03-03-2008 Alexandre David, MVP'08 3

So Far…
Decomposition techniques.

Identify tasks.
Analyze with task dependency & interaction
graphs.
Map tasks to processes.

Now properties of tasks that affect a good
mapping.

Task generation, size, and size of data.

4

03-03-2008 Alexandre David, MVP'08 4

Task Generation
Static task generation.

Tasks are known beforehand.
Apply to well-structured problems.

Dynamic task generation.
Tasks generated on-the-fly.
Tasks & task dependency graph not available
beforehand.

Model-checker

!

The well-structured problem can typically be decomposed using data or
recursive decomposition techniques.
Dynamic tasks generation: Exploratory or speculative decomposition
techniques are generally used, but not always. Example: quicksort.

5

03-03-2008 Alexandre David, MVP'08 5

Task Sizes
Relative amount of time for completion.

Uniform – same size for all tasks.
Matrix multiplication.

Non-uniform.
Optimization & search problems.

Model-checker

Typically the size of non-uniform tasks is difficult to evaluate beforehand.

6

03-03-2008 Alexandre David, MVP'08 6

Size of Data Associated with
Tasks
Important because of locality reasons.
Different types of data with different sizes

Input/output/intermediate data.

Size of context – cheap or expensive
communication with other tasks.

Example of 15-puzzle has a small context: easy to communicate the tasks to
different processes.

7

03-03-2008 Alexandre David, MVP'08 7

Characteristics of Task
Interactions
Static interactions.

Tasks and interactions known beforehand.
And interaction at pre-determined times.

Dynamic interactions.
Timing of interaction unknown.
Or set of tasks not known in advance.

!

Static vs. dynamic.
Static or dynamic interaction pattern.
Dynamic harder to code, more difficult for MPI.

8

03-03-2008 Alexandre David, MVP'08 8

Characteristics of Task
Interactions
Regular interactions.

The interaction graph follows a pattern.

Irregular interactions.
No pattern. Model-checker

!

Regular vs. irregular.
Regular patterns can be exploited for efficient implementations.
Dynamic harder to code, more difficult for MPI.

9

03-03-2008 Alexandre David, MVP'08 9

Example: Image Dithering

The color of each pixel is determined as the weighted average of its original
value and the values of the neighboring pixels. Decompose into regions, 1
task/region. Pattern is a 2-D mesh. Regular pattern.

10

03-03-2008 Alexandre David, MVP'08 10

Example: Sparse Matrix*Vector

Irregular pattern. Interaction pattern depends on the values in A.

11

03-03-2008 Alexandre David, MVP'08 11

Characteristics of Task
Interactions
Data sharing interactions:

Read-only interactions.
Read only data associated with other tasks.

Read-write interactions.
Read & modify data of other tasks.

Read-only vs. read-write.
Read-only example: matrix multiplication (share input). Read-write example:
15-puzzle with shared priority list of states to be explored; Priority given by
some heuristic to evaluate the distance to the goal.

12

03-03-2008 Alexandre David, MVP'08 12

Characteristics of Task
Interactions
One-way interactions.

Only one task initiates and completes the
communication without interrupting the
other one.

Two-way interactions.
Producer – consumer model.

One-way vs. two-way.
One-way more difficult with MPI since MPI has an explicit send & receive set
of calls. Conversion one-way to two-way with polling or another thread waiting
for communication.

13

03-03-2008 Alexandre David, MVP'08 13

Mapping Techniques for Load
Balancing
Map tasks onto processes.
Goal: minimize overheads.

Communication.
Idling.

Uneven load distribution may cause idling.
Constraints from task dependency → wait for
other tasks.

Minimizing communication may contradict minimizing idling. Put tasks that
communicate with each other on the same process but may unbalance the
load -> distribute them but increase communication.
Load balancing is not enough to minimize idling.

14

03-03-2008 Alexandre David, MVP'08 14

Example

Global balancing OK but due to task dependency P4 is idling.

15

03-03-2008 Alexandre David, MVP'08 15

Mapping Techniques
Static mapping.

NP-complete problem for non-uniform tasks.
Large data compared to computation.

Dynamic mapping.
Dynamically generated tasks.
Task size unknown.

Even static mapping may be difficult: The problem of obtaining an optimal
mapping is an NP-complete problem for non-uniform tasks. In practice simple
heuristics provide good mappings.
Cost of moving data may out-weight the advantages of dynamic mapping.
In shared address space dynamic mapping may work well even with large
data, but be careful with the underlying architecture (NUMA/UMA) because
data may be moved physically.

16

03-03-2008 Alexandre David, MVP'08 16

Schemes for Static Mapping
Mappings based on data partitioning.
Mappings based on task graph partitioning.
Hybrid mappings.

17

03-03-2008 Alexandre David, MVP'08 17

Array Distribution Scheme
Combine with “owner computes” rule to
partition into sub-tasks.

1-D block distribution scheme.

Data partitioning mapping.
Mapping data = mapping tasks.
Simple block-distribution.

18

03-03-2008 Alexandre David, MVP'08 18

Block Distribution cont.

Generalize to higher dimensions: 4x4, 2x8.

19

03-03-2008 Alexandre David, MVP'08 19

Example: Matrix*Matrix
Partition output of C=A*B.
Each entry needs the same amount of
computation.
Blocks on 1 or 2 dimensions.
Different data sharing patterns.
Higher dimensional distributions

means we can use more processes.
sometimes reduces interaction.

In the case of matrix n*n multiplication, 1-D -> n processes at most, 2-D n2

processes at most.

20

03-03-2008 Alexandre David, MVP'08 20

O(n2/sqrt(p)) vs. O(n2) shared data.

21

03-03-2008 Alexandre David, MVP'08 21

Imbalance Problem
If the amount of computation associated
with data varies a lot then block
decomposition leads to imbalances.
Example: LU factorization (or Gaussian
elimination).

Computations

Exercise on LU-decomposition.

22

03-03-2008 Alexandre David, MVP'08 22

LU Factorization
Non singular square matrix A (invertible).
A = L*U.
Useful for solving linear equations.

L

U
A

23

03-03-2008 Alexandre David, MVP'08 23

LU Factorization

In practice we work on A.

N steps

24

03-03-2008 Alexandre David, MVP'08 24

LU Algorithm
Proc LU(A)
begin

for k := 1 to n-1 do
for j := k+1 to n do

A[j,k] := A[j,k]/A[k,k]
endfor
for j := k+1 to n do

for i := k+1 to n do
A[i,j] := A[i,j] – A[i,k]*A[k,j]

endfor
endfor

endfor
end

Normalize L
U[k,j] := A[k,j]/L[k,k]

U[k,k]

L[j,k]

L[i,k] U[k,j] L

U

A

Typos

25

03-03-2008 Alexandre David, MVP'08 25

Another Variant

for k := 1 to n-1 do
for j := k+1 to n do

A[k,j] := A[k,j]/A[k,k]
for i := k+1 to n do

A[i,j] := A[i,j] – A[i,k]*A[k,j]
endfor

endfor
endfor

More common in the litterature.

26

03-03-2008 Alexandre David, MVP'08 26

Decomposition

Load imbalance for individual tasks. Load imbalance from dependencies.

27

03-03-2008 Alexandre David, MVP'08 27

Cyclic and Block-Cyclic
Distributions
Idea:

Partition an array into many more blocks than
available processes.
Assign partitions (tasks) to processes in a
round-robin manner.

→ each process gets several non adjacent
blocks.

28

03-03-2008 Alexandre David, MVP'08 28

Block-Cyclic Distributions

a) Partition 16x16 into 2*4 groups of 2 rows.
αp groups of n/αp rows.

b) Partition 16x16 into square blocks of size
4*4 distributed on 2*2 processes.
α2p groups of n/α2p squares.

Reduce the amount of idling because all processes have a sampling of tasks
from all parts of the matrix.
But lack of locality may result in performance penalties + leads to high degree
of interaction. Good value for α to find a compromise.

29

03-03-2008 Alexandre David, MVP'08 29

Randomized Distributions

Irregular distribution with regular mapping!
Not good.

30

03-03-2008 Alexandre David, MVP'08 30

1-D Randomized Distribution

Permutation

31

03-03-2008 Alexandre David, MVP'08 31

2-D Randomized Distribution

2-D block random distribution.

Block mapping.

32

03-03-2008 Alexandre David, MVP'08 32

Graph Partitioning
For sparse data structures and data
dependent interaction patterns.

Numerical simulations. Discretize the problem
and represent it as a mesh.

Sparse matrix: assign equal number of
nodes to processes & minimize interaction.
Example: simulation of dispersion of a
water contaminant in Lake Superior.

33

03-03-2008 Alexandre David, MVP'08 33

Discretization

34

03-03-2008 Alexandre David, MVP'08 34

Partitioning Lake Superior

Random partitioning. Partitioning with minimum
edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.

Minimum edge cut from a graph point of view. Keep locality of data with
processes to minimize interaction.

35

03-03-2008 Alexandre David, MVP'08 35

Mappings Based on Task
Partitioning
Partition the task dependency graph.

Good when static task dependency graph with
known task sizes.

Mapping on 8
processes.

Determining an optimal mapping is NP-complete. Good heuristics for
structured graphs.
Binary tree task dependency graph: occurs in recursive decompositions as
seen before. The mapping minimizes interaction. There is idling but it is
inherent to the task dependency graph, we do not add more.
This example good on a hypercube. See why?

36

03-03-2008 Alexandre David, MVP'08 36

Sparse Matrix*Vector

Example seen before.

37

03-03-2008 Alexandre David, MVP'08 37

Sparse Matrix*Vector

38

03-03-2008 Alexandre David, MVP'08 38

Hierarchical Mappings
Combine several mapping techniques in a
structured (hierarchical) way.
Task mapping of a binary tree (quicksort)
does not use all processors.

Mapping based on task dependency graph
(hierarchy) & block.

39

03-03-2008 Alexandre David, MVP'08 39

Binary Tree -> Hierarchical Block Mapping

40

03-03-2008 Alexandre David, MVP'08 40

Schemes for Dynamic Mapping
Centralized Schemes.

Master manages pool of tasks.
Slaves obtain work.
Limited scalability.

Distributed Schemes.
Processes exchange tasks to balance work.
Not simple, many issues.

!

Centralized schemes are easy to implement but present an obvious bottleneck
(the master).
Self-scheduling: slaves pick up work to do whenever they are idle.
Bottleneck: tasks of size M, it takes t to assign work to a slave → at most M/t
processes can be kept busy.
Chunk-scheduling: a way to reduce bottlenecks by getting a group of tasks.
Problem for load imbalances.

Distributed schemes more difficult to implement.
How do you choose sender & receiver? i.e. if A is overloaded, which process
gets something?
Initiate transfer by sender or receiver? i.e. A overloaded sends work or B idle
requests work?
How much work to transfer?
When to transfer?
Answers are application specific.

41

03-03-2008 Alexandre David, MVP'08 41

Minimizing Interaction
Overheads
Maximize data locality.

Minimize volume of data-exchange.
Minimize frequency of interactions.

Minimize contention and hot spots.
Share a link, same memory block, etc…
Re-design original algorithm to change the
interaction pattern.

!

Minimize volume of exchange → maximize temporal locality. Use higher
dimensional distributions, like in the matrix multiplication example. We can
store intermediate results and update global results less often.
Minimize frequency of interactions → maximize spatial locality.

Related to the previously seen cost model for communications.

Changing the interaction pattern: For the matrix multiplication example, the
sum is commutative so we can re-order the operations modulo sqrt(p) to
remove contention.

42

03-03-2008 Alexandre David, MVP'08 42

Minimizing Interaction
Overheads
Overlapping computations with interactions
– to reduce idling.

Initiate interactions in advance.
Non-blocking communications.
Multi-threading.

Replicating data or computation.
Group communication instead of point to
point.
Overlapping interactions.

Replication is useful when the cost of interaction is greater than replicating the
computation. Replicating data is like caching, good for read-only accesses.
Processing power is cheap, memory access is expensive – also apply at larger
scale with communicating processes.

Collective communication such as broadcast. However, depending on the
communication pattern, a custom collective communication may be better.

43

03-03-2008 Alexandre David, MVP'08 43

Overlapping Interactions

44

03-03-2008 Alexandre David, MVP'08 44

Parallel Algorithm Models
How to select decomposition & mapping
techniques to minimize interaction.

Data parallel model.
Tasks statically mapped.
Similar operations on different data.

SIMD.

Task graph model.
Start from task dependency graph.
Use task interaction graph to promote locality.

An algorithm model is a way of structuring a parallel algorithm by selecting a
decomposition and mapping technique and applying the appropriate strategy
to minimize interactions.

45

03-03-2008 Alexandre David, MVP'08 45

Parallel Algorithm Models
Work pool (or task pool) model.

No pre-mapping – centralized or not.

Master-slave model.
Master generates work for slaves – allocation
static or dynamic.

Pipeline or producer – consumer model.
Stream of data traverses processes – stream
parallelism.

!

Pipeline model heavily used in GPUs. Load balancing is a function of task
granularity.

+ hybrid models:
•Multiple models applied hierarchically.
•Multiple models applied sequentially to different phases.

