
1

The PRAM Model

Alexandre David
1.2.05

2

11-02-2008 Alexandre David, MVP'08 2

Outline
Introduction to Parallel Algorithms
(Sven Skyum)

PRAM model
Optimality
Examples

3

11-02-2008 Alexandre David, MVP'08 3

Standard RAM Model
Standard Random Access Machine:

Each operation
load, store, jump, add, etc …
takes one unit of time.

Simple, generally one model.

The RAM is the basic machine model behind sequential algorithms.

4

11-02-2008 Alexandre David, MVP'08 4

Multi-processor Machines

Numerous architectures
→ different models.
Differences in communication

Synchronous/asynchronous
Differences in computations

Synchronous (parallel)/asynchronous
(distributed)

Differences in memory layout
NUMA/UMA

Even if there are different architectures and models, the goal is to abstract
from the hardware and have a model on which to reason and analyze
algorithms. Synchronous vs. asynchronous communication is like blocking
vs. non-blocking communication. NUMA is assumed most often when the
model talks about local memory to a given processor.
Clusters of computers correspond to NUMA in practice. They are best
suited for message passing type of communication.
Shared memory systems are easier from a programming model point of
view but are more expensive.

5

11-02-2008 Alexandre David, MVP'08 5

PRAM Model

A PRAM consists of
a global access memory (i.e. shared)
a set of processors running the same
program (though not always), with a
private stack.

A PRAM is synchronous.
One global clock.

Unlimited resources.

PRAM model – Parallel Random Access Machine.
In the report the stack is called accumulator.
Synchronous PRAM means that all processors follow a global clock (ideal
model!). There is no direct or explicit communication between processors
(such as message passing). Two processors communicate if one reads
what another writes.
Unlimited resources means we are not limited by the size of the memory
and the number of processors varies in function of the size of the problem,
i.e., we have access to as many processors as we want. Designing
algorithms for many processors is very fruitful in practice even with very few
processors in practice whereas the opposite is limiting.

6

11-02-2008 Alexandre David, MVP'08 6

Classes of PRAM

How to resolve contention?
EREW PRAM – exclusive read, exclusive write
CREW PRAM – concurrent read, exclusive
write
ERCW PRAM – exclusive read, concurrent
write
CRCW PRAM – concurrent read, concurrent
write

?

Most realistic?
Most convenient??

The most powerful model is of course CRCW where everything is allowed
but that’s the most unrealistic in practice too. The weakest model is EREW
where concurrency is limited, closer to real architectures although still
infeasible in practice (need m*p switches to connect p processors to m
memory cells and provide exclusive access).
Exclusive read/write means access is serialized.
Main protocol to resolve contention (writing is the problem):
•Common: concurrent write allowed if the values are identical.
•Arbitrary: only an arbitrary processes succeeds.
•Priority: processes are ordered.
•Sum: the result is the sum of the values to be stored.
Exclusive write is exclusive with reads too.

7

11-02-2008 Alexandre David, MVP'08 7

Example: Sequential Max

Function smax(A,n)
m := -∞
for i := 1 to n do

m := max{m,A[i]}
od
smax := m

end

Time O(n)

Sequential dependency,
difficult to parallelize.

Simple algorithm description, independent from a given language. See your
previous course on algorithms. O-notation used, check your previous course
on algorithms too.
Highly sequential, difficult to parallelize.

8

11-02-2008 Alexandre David, MVP'08 8

Example: Sequential Max (bis)
Function smax2(A,n)

for i := 1 to n/2 do
B[i] := max{A[2i-1],A[2i]}

od
if n = 2 then

smax2 := B[1]
else

smax2 := smax2(B,n/2)
fi

end

Time O(n)

Dependency only between every call.

Remarks:
•Additional memory needed in this description
•B[i] compresses the array A[1..n] to B[1..n/2] with every element being the
max of two elements from A (all elements are taken).
•The test serves to stop the recursive call – termination!
This is an example of the compress and iterate paradigm which leads to
natural parallelizations. Here the computations in the for loop are
independent and the recursive call tree gives the dependency between
tasks to perform.

9

11-02-2008 Alexandre David, MVP'08 9

Example: Parallel Max

Function smax2(A,n) [p1,p2,…,pn/2]
for i := 1 to n/2 pardo

pi: B[i] := max{A[2i-1],A[2i]}
od
if n = 2 then

p1: smax2 := B[1]
else

smax2 := smax2(B,n/2) [p1,p2,…,pn/4]
fi

end

Time O(logn)

EREW-PRAM ?

?

EREW-PRAM algorithm.. Why? There is actually no contention and the
dependencies are resolved by the recursive calls (when they return).
Here we give in brackets the processors used to solve the current problem.
Time t(n) to execute the algorithms satisfies t(n)=O(1) for n=2 and
t(n)=t(n/2)+O(1) for n>2. Why?
Think parallel and PRAM (all operations synchronized, same speed, pi:
operation in parallel). The loop is done in constant time on n/2 processors in
parallel.
How many calls?
Answer: see your course on algorithms. Here simple recursion tree logn
calls with constant time: t(n)=O(logn). Note: log base 2. You are expected
to know a minimum about log.

10

11-02-2008 Alexandre David, MVP'08 10

Analysis of the Parallel Max
Time: O(logn) for n/2 processors.
Work done?

p(n)=n/2 number of processors.
t(n) time to run the algorithm.
w(n)=p(n)*t(n) work done.
Here w(n)=O(n logn).
Is it optimal??

Work done corresponds to the actual amount of computation done (not
exactly though). In general when we parallelize algorithms, the total amount
of computations is greater than the original, but by a constant if we want to
be optimal.
The work measures the time required to run the parallel algorithm on one
processor that would simulate all the others.

11

11-02-2008 Alexandre David, MVP'08 11

Optimality

If w(n) is of the same order as
the time for the best known
sequential algorithm, then the
parallel algorithm is said to be
optimal.

Definition

What about our previous example?
It’s not optimal. Why? Well, we use only n/2,n/4,…,2,1 processors, not n all
the time!
We do not want to waste time like that right?
Another way to see it is that you get a speed-up linear to the number of
processors (though at a constant factor, which means sub-linear).

12

11-02-2008 Alexandre David, MVP'08 12

Analysis of the Parallel Max
Time: O(logn) for n/2 processors.
Work done?

p(n)=n/2 number of processors.
t(n) time to run the algorithm.
w(n)=p(n)*t(n) work done.
Here w(n)=O(n logn).
Is it optimal? NO, O(n) to be optimal.
Why??

13

11-02-2008 Alexandre David, MVP'08 13

But…

Can a parallel algorithm solve
a problem with less work than
the best known sequential
solution?

14

11-02-2008 Alexandre David, MVP'08 14

Design Principle

Construct optimal algorithms
to run as fast as possible.

=
Construct optimal algorithms
using as many processors as
possible!

Because optimal with p → optimal with fewer than p.
Opposite false.
Simulation does not add work.

Note that if we have an optimal parallel algorithm running in time t(n) using
p(n) processors then there exist optimal algorithms using p’(n)<p(n)
processors running in time O(t(n)*p(n)/p’(n)). That means that you can use
fewer processors to simulate an optimal algorithm that is using many
processors! The goal is to maximize utilization of our processors.
Simulating does not add work with respect to the parallel algorithm.

15

11-02-2008 Alexandre David, MVP'08 15

Brent’s Scheduling Principle

If a parallel computation consists of
k phases
taking time t1,t2,…,tk
using a1,a2,…,ak processors
in phases 1,2,…,k

then the computation can be done in time
O(a/p+t) using p processors where
t =sum(ti), a =sum(aiti).

Theorem

What it means: same time as the original plus an overhead. If the number of
processors increases then we decrease the overhead. The overhead
corresponds to simulating the ai with p. What it really means: It is possible
to make algorithms optimal with the right amount of processors (provided
that t*p has the same order of magnitude of tsequential). That gives you a
bound on the number of needed processors.
It’s a scheduling principle to reduce the number of physical processors
needed by the algorithm and increase utilization. It does not do miracles.
Proof: i’th phase, p processors simulate ai processors. Each of them
simulate at most ceil(ai/p)≤ai/p+1, which consumes time ti at a constant
factor for each of them.

16

11-02-2008 Alexandre David, MVP'08 16

Previous Example
k phases = logn.
ti = constant time.
ai = n/2,n/4,…,1 processors.
With p processors we can use time
O(n/p + logn).
Choose p=O(n/ logn) → time O(logn) and
this is optimal!

There is a “but”: You need to know n in
advance to schedule the computation.

Note: n is a power of 2 to simplify. Recall the definition of optimality to
conclude that it is optimal indeed. This does not gives us an implementation,
but almost.
Typo p6 “using O(n/ logn) processors”. Divide and conquer same as
compress and iterate for the exercise.

17

11-02-2008 Alexandre David, MVP'08 17

Prefix Computations

Input: array A[1..n] of numbers.
Output: array B[1..n] such that B[k] = sum(i:1..k) A[i]
Sequential algorithm:
function prefix+(A,n)

B[1] := A[1]
for i = 2 to n do

B[i] := B[i-1]+A[i]
od

end

Time O(n)

Problem?

18

11-02-2008 Alexandre David, MVP'08 18

Parallel Prefix Computation
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end

Correctness: When the recursive call of prefix+ returns then
D[k]=sum(i:1..2k) A[i] (for 1 ≤ k ≤ n/2). That comes from the compression
algorithm idea.

19

11-02-2008 Alexandre David, MVP'08 19

Parallel Prefix Computation
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end

Correctness: When the recursive call of prefix+ returns then
D[k]=sum(i:1..2k) A[i] (for 1 ≤ k ≤ n/2). That comes from the compression
algorithm idea.

20

11-02-2008 Alexandre David, MVP'08 20

Prefix Computations
The point of this algorithm:

It works because + is associative (i.e. the
compression works).
It will work for any other associative
operations.
Brent’s scheduling principle:

For any associative operator computable in O(1),
its prefix is computable in O(logn) using O(n/ logn)
processors, which is optimal!

On a EREW-PRAM of course.
In particular initializing an array to a constant value…

21

11-02-2008 Alexandre David, MVP'08 21

Merging (of Sorted Arrays)

Rank function:
rank(x,A,n) = 0 if x < A[1]
rank(x,A,n) = max{i | A[i] ≤ x}
Computable in time O(logn) by binary
search.

Merge A[1..n] and B[1..m] into
C[1..n+m].
Sequential algorithm in time O(n+m).

22

11-02-2008 Alexandre David, MVP'08 22

Parallel Merge
function merge1(A,B,n,m)[p1,…,pn+m]

for i = 1 to n pardo pi:
IA[i] := rank(A[i]-1,B,m)
C[i+IA[i]] := A[i]

od
for i = 1 to m pardo pi:

IB[i] := rank(B[i],A,n)
C[i+IB[i]] := B[i]

od
merge1 := C

end
CREW
Not optimal.

?

On CRCW-PRAM.
Compute indices for A[i] and compute indices for B[i] in parallel. Indices
found by computing the rank of the elements. Dominating factor is the rank
so this runs in O(log(n+m)). Not optimal, you see why?
However we could use processors pi+n for the 2nd loop (and we would have
to rewrite this so that we have all processors doing something), which is not
suggested by the report but it does not change much (we still have
(n+m)*log(n+m)).
The more complicated version proposed in the report is optimal, which
means it’s possible to merge arrays optimally.
Being more careful here we see that it’s actually CREW-PRAM. If it is
CRCW then it would write fewer elements than n+m and it would be wrong.

23

11-02-2008 Alexandre David, MVP'08 23

Optimal Merge - Idea

A B
n m

n/log(n) sub-arrays of
log(n) elements

m/log(m) sub-arrays of
log(m) elements

C

previous merge: n/log(n) + m/log(m) elements
costs max(log(n),log(m)) = O(log(n+m)),
(optimal) on (m+n)/log(n+m) processors!

Merge n/log(n)+m/log(m) lists with sequential merge in parallel.
Max length of sub-list is O(log(n+m)).

24

11-02-2008 Alexandre David, MVP'08 24

Example: Max in O(1)
Max of an array in constant time!

A

][0][
1][][][

0][1

iAiB
jBjAiA

iB ni

⇒=
=⇒>

=≤≤
1. Use n processors to

initialize B.
2. Use n2 processors to

compare all A[i] & A[j].
3. Use n processors to

find the max.

n elements

25

11-02-2008 Alexandre David, MVP'08 25

Simulating CRCW on EREW
Assumption on addressed memory p(n)c

for some constant c.
Simulation algorithm idea:

Sort accesses.
Give priority to 1st.
Broadcast result for contentious accesses.

Conclusion: Optimality can be kept with
EREW-PRAM when simulating a CRCW
algorithm.

Read the details in the report. Remember the idea and the result.

