
1

Parallel Programming
Platforms

Alexandre David
1.2.05

http://www.cs.aau.dk/~adavid/teaching/MVP-08/

2

06+11-02-2008 Alexandre David, MVP'08 2

Outline
Implicit Parallelism (2.1)
Limitations of Memory System Performance
(2.2)
Dichotomy of Parallel Computing Platforms
(2.3)

I will follow the book, skipping sections from time to time but the order will be
respected. References to sections are given on the web and reminded during
the lectures (plan may change). Lectures are intended to teach you and help
you read the book.

3

06+11-02-2008 Alexandre David, MVP'08 3

Motivations
Bottlenecks in computers:

Processor
Memory
Datapath

Addressed with multiplicity.
Parallelization not solution to everything

Sub-optimal serial code bad
Optimize serial first (similar characteristics)

Bottlenecks of different kinds.
•Processor: less and less, though can be depending on some bad behaviors
(branch miss prediction in large pipelines).
•Memory: more and more considering the speed gap between processor and
memory, the problem being how to feed the processor with data so that it does
not stay idle.
•Datapath: depends on programs and architecture, linked to previous ones.
Motivations for optimizing serial programs and why we talk about implicit
parallelism: Sub-optimal serial code exhibits unreliable and misleading
behaviors. Undesirable effects coming from poor cache utilization, bad branch
prediction, etc … that may become even worse in a parallel context (distribute
data, synchronize, etc …).
Similar characteristics in serial programs with intrinsic parallelism of modern
processors (pipelines). Understanding architecture is the first step to good
programming.

4

06+11-02-2008 Alexandre David, MVP'08 4

Trends in Microprocessors
Processor speed increase exponentially
More and more transistors: How to use
them wisely?
Several instructions are issues in the
same clock cycle (possibly on multiple
functional units) : superscalar
processors.
How to select and execute instructions?

Already mentioned: Moore’s law power x2 every 18 month, but for processor
only. Global performance plagued by memory abysmal performance. Higher
level of integration poses the question of how to best utilize transistors.
Functional units: MMU, FPU, etc usually part of the marketing buzz of
microprocessor companies.
How to? That’s the different architectures, not going into details but basically
all processors are +/- RISC processors with a translation from assembler to
microcode. Then most have branch prediction.

5

06+11-02-2008 Alexandre David, MVP'08 5

Pipelining and Superscalar
Execution
Pipeline idea: overlap stages in instruction
execution.
Example of car factory.
The good: higher throughput.
The bad: penalty of branch miss prediction.
Multiple pipelines: several functional units.

Overlapping stages: cut instructions in small pieces, one per cycle, and try to
occupy all the stages. But why after all? Not better to have a super powerful
one stage-do-all? Car factory: Imagine a fast factory where it takes 12h to
complete one car. If there is one unit doing all, then it will be busy all the time
and throughput would be 1 car per 12h. How to improve? Buy 11 other full
scale units? Super expensive! Cut the bit unit in 12 smaller parts, 1h per part,
every car needs 12h but throughput is 1 car per hour. 12x faster, cost efficient.
Branch prediction: try to keep the pipeline busy by filling it ahead, but if did it
wrong, then need to flush it (and loose all the computations). P4: 20 stages,
miss prediction means loose 20 cycles.

6

06+11-02-2008 Alexandre David, MVP'08 6

Pipelining and Superscalar
Execution

1. load R1,@1000
2. load R2,@1008
3. addR1,@1004
4. addR2,@100C
5. add R1,R2
6. store R1,@2000

c=a+b+c+d
as
c=(a+b)+(c+d)

Compiler

CPU

Instruction cycles

0 2 4 6 8

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

2x IF, ID, OF, … in the same cycle:
superscalar.

Dual issue or two-way superscalar execution.
IF: Instruction Fetch.
ID: Instruction Decode.
OF: Operand Fetch.
E: Instruction Execute.
WB: Write back.
NA: No Action.
Note: begin to execute 6th instruction at 4th clock cycle.

Compare the number of cycles without pipelining and/or superscalar.

7

06+11-02-2008 Alexandre David, MVP'08 7

Pipelining and Superscalar
Execution
Imagine another ordering (or
factorization by the compiler): different
performance.
Resolve data dependency.
Reordering by CPU possible (out-of-order
execution).

Careful with floats.

Resource dependency.
?

Data dependency: needs previous results in order to continue computations.
A=(B+C)*D, we need B+C before computing *D.
Resource dependency: needs functional units. A=B*C+C*D+D*E+E*F+F*G,
obviously not all * can be done in parallel because of lack of functional units.
Most processors are capable of out-of-order execution, not Xbox 360.

8

06+11-02-2008 Alexandre David, MVP'08 8

Limitations
Bottleneck: slowest stage -> small stages
to go fast -> long pipelines

BUT miss prediction gives big penalties

How to keep busy the functional units?

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

Horizontal waste:
parts of execution
units used.

NA
Vertical waste:
no instruction on
execution unit. Here
no instruction on the
adder unit.

Intrinsic parallelism: Pipeline (multiple stages) & multiple functional units
(superscalar) implement parallelism.
Modern processors: 4 way superscalar, 10-20 stage pipeline.

9

06+11-02-2008 Alexandre David, MVP'08 9

Adder Utilization (fig 2.1)

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

Adder functional unit: execute =
2 units.

E

3 4 5 6 7 8

E
E

E
NA

vertical (adder idle)
horizontal (partial use)

More explanation for fig 2.1.

10

06+11-02-2008 Alexandre David, MVP'08 10

VLIWP
Bundle instructions together to simplify the
superscalar scheduler.
IA64 (Itanium) is an example.
Problems:

Rely a lot on the compiler.
Limited parallelism (not dynamic).

Very Long Instruction Word Processors!
Superscalar schedulers are complex and expensive (transistors). VLIW design
idea is to rely on the compiler to bundle instructions together, so that the
scheduler becomes very simple.

11

06+11-02-2008 Alexandre David, MVP'08 11

Limitations of Memory System
Performance
The memory system is most often the
bottleneck.
Performance captured by

latency and
bandwidth.

Remark: In practice latency is complicated
to define: CL2, CL3, 2-2-2-5,…

The problem is most often how to feed the processor with continuous data so
that it does not stall.
Latency is the time from the issue of a memory request to the time the data
becomes available to the processor.
Bandwidth is the rate at which data can be pumped to the processor.
Example: water hose. Latency: time before first drop of water comes out.
Bandwidth: rate flow of water.

12

06+11-02-2008 Alexandre David, MVP'08 12

Effect on Performance: Example
Processor @1GHz (1ns cycle) capable of
executing 4 IPC + DRAM with 100ns
latency.
4 IPC @1GHz -> 4GFLOPS peak rating.
Processor must wait 100 cycles for every
request.

Vector operations (dot product) @10MFLOPs.

No cache in this example to simplify. It is still general enough since we can
consider first access to some memory and take cache miss into account.
ALU: arithmetic and logical unit.
FPU: floating point unit.
Here absolute worst case scenario but still we loose a factor 100 in
performance.

13

06+11-02-2008 Alexandre David, MVP'08 13

Improving with Cache
Note: Often “$$” on pictures (cash).
Hierarchical memory architecture with
several levels of cache (2 common).
Instruction and data separate for L1.
Low latency, high bandwidth, but small.
Why does it improve performance????

Common: Athlon 64 64K+64K L1, 1M L2. Pentium 4 more complicated
NetBurst with execution trace cache (12K) and 16K L1, with 1M L2.
Now you have to think some time about why it helps. You know about cache
hit ratio, cache miss, at least you’ve heard about it.

14

06+11-02-2008 Alexandre David, MVP'08 14

Why is $$ good?
Temporal locality

Repeated access to the same data in a small
window of time.

Spatial locality
Consecutive data accessed by successive
instructions.

Vital assumptions, almost always hold.
Very important for parallel computing.

REMEMBER these two! They are common to almost all programs and are vital
to cache performance.
For parallel computing, even more important: apart from the aggregate higher
amount of cache that must be used wisely, we have more penalty for moving
data around processors (or processor nodes).

15

06+11-02-2008 Alexandre David, MVP'08 15

Matrix Multiplication Example
Common example, will be used many times in
the course.
C=A*B, where A, B , and C are matrices.

∑
=

=
n

k
kjikij bac

1

Complexity??

Compatible dimensions required. In practice n*n.

16

06+11-02-2008 Alexandre David, MVP'08 16

Matrix Multiplication Example

i

j

k

1

A

B

C

17

06+11-02-2008 Alexandre David, MVP'08 17

Matrix Multiplication Example

i

j

A

B

C

ai1

b1j

*
ai2

b2j

*

1 add & mul/k
n3 total

(n*n matrices).
Re-use

Re-use: spatial and temporal localities. Intuitively: n3 accesses on 2x n2

matrices (if n*n).

18

06+11-02-2008 Alexandre David, MVP'08 18

Cache Characteristics
Hit ratio (behavior): fraction of references
satisfied by the cache.
Cache line (= bus width): granularity.
Associativity (architecture): “collision list”
to reduce cache eviction.
For the matrix: 2n2 fetches from memory
to populate the cache, and then n3 direct
accesses at full speed.

Data re-use is the keyword. Cache line: word granularity is too expensive and
bad for spatial locality. 4 words usually for L2 (access to system bus), and
internally 256-bit data bus for L1<->L2 (8 words).
The term cache eviction is not mentioned in the book and is missing. It is an
important notion to know.

19

06+11-02-2008 Alexandre David, MVP'08 19

Impact on Memory
Bandwidth (and Latency)

Access to successive words much better than
random access.

Higher bandwidth (whole cache line at once)
Better latency (successive words already in
cache)

20

06+11-02-2008 Alexandre David, MVP'08 20

Example: Strided Access

a) Add vectors (temporary results) to get final result.
b) Compute final result incrementally.
Strided access (a) yields poor performance.

21

06+11-02-2008 Alexandre David, MVP'08 21

Other Approaches to Hide Latency

Prefetching
but may evict useful data because cache is
small.

Multi-threading
but needs higher bandwidth because all the
threads share the same bus.

Prefetching is like fetching the next cache line when possible (hardware
decides), or same effect by reordering instructions (hardware or compiler) to
issue loads long before usage. Works if consecutive words are accessed by
consecutive instructions (spatial locality).
Multi-thread: switch to another thread when a thread stalls for data and keep
the processor busy.
In fact, both solutions address the latency problem and exacerbate the
bandwidth problem. That was probably the design idea behind RAMBUS,
though no multi-threading at the time to use it! + the fact that latency was way
higher than other systems.

22

06+11-02-2008 Alexandre David, MVP'08 22

Multi-threading

iA

B

C

1 thread/dot product

BUT: need more bandwidth!
?

Software: need to create the threads explicitly.
Hardware: need support for multi-thread.

23

06+11-02-2008 Alexandre David, MVP'08 23

Summary on Memory
Exploit spatial and temporal locality in
programs. For sequential and parallel
programs!
Operations/memory accesses is a good
indicator of tolerance to memory
bandwidth.
Processing is cheap, memory is expensive.

24

06+11-02-2008 Alexandre David, MVP'08 24

Dichotomy of Parallel Computing
Platforms
Logical organization: programmer’s view.
Physical organization: actual hardware.
Two critical components:

expressing parallel tasks
(control structure)
specifying interaction between them
(communication model).

The 2 critical components both through logical and physical organizations.

25

06+11-02-2008 Alexandre David, MVP'08 25

Control Structure
Parallelism can be expressed at different
levels of granularity

from instruction level parallelism
to processes.

SIMD: single instruction stream, multiple
data stream.
MIMD: multiple instruction stream …

Processing units in parallel computers either operate under the centralized
control of a single control unit or work independently.
•SIMD: A single control unit dispatches the same instruction to various
processors or functional units.
•MIMD: Each processor has its own control unit and can execute different
instructions on different data items.

26

06+11-02-2008 Alexandre David, MVP'08 26

PE: processing element.
Typically, SIMD implemented as special instruction sets on processors (MMX,
SSE, SSE2, 3DNow!), and MIMD implemented as multiprocessor machines or
clusters.
SIMD relies on the regular structure of computations (such as those in image
processing).
A variant of MIMD, called single program multiple data streams (SPMD)
executes the same program on different processors, which is often the case in
practice.

27

06+11-02-2008 Alexandre David, MVP'08 27

Communication Model:
Shared Address Space
Memory shared between several
processors.

NUMA different access time
UMA same access time.
Cases with local cache considered UMA.

Easier programming, one address space
But cache coherence mechanisms needed.
But need to solve contention (writes).

NUMA: non-uniform memory access. Cheaper and easier to implement. Need
locality to perform well.
UMA: uniform memory access. Performant uniform access expensive.

28

06+11-02-2008 Alexandre David, MVP'08 28

UMA vs. NUMA

29

06+11-02-2008 Alexandre David, MVP'08 29

Communication Model:
Shared Address Space

Memory

read/write

Implemented as shared memory computers
or distributed memory computers.

30

06+11-02-2008 Alexandre David, MVP'08 30

Message-Passing Platforms
Memory private to processors.
Interaction via messages

Send/receive primitives.
MPI libraries.

Hardware needed: good network
interconnect.

Cheap and popular solution: cluster of MP machines connected via high
bandwidth network.

