
1

Introduction to the Case-
Study: A Model-Checker

Real stuff!

Alexandre David
1.2.05

http://www.cs.aau.dk/~adavid/teaching/MVP-08/



2

6-02-2008 Alexandre David, MVP'08 2

Classification of Problems

Computation is known 
in advance

can divide statically
load balancing “easy”
dependency problems
off-line setup.

Ex:
matrix-multiplication
linear equation solver

Computation is not
known in advance

dynamic distribution
load balancing is an 
issue
termination is an issue
dependencies make it 
more spicy

Ex:
search, games
model-checking

warm-up

case-study

extra

The book is a bit lacking on the dynamic side. The exercises complement 
this and address related issues.



3

6-02-2008 Alexandre David, MVP'08 3

The Problem
Application domain: Searching, planning, 
AI, scheduling, formal verification…
Idea:

You make a model of a system.
Description language = automaton/state-
machine.
Your system changes its state according to a 
transition relation = set of rules that tell 
how the system may evolve.
Reachability problem: Given an initial state, 
how to reach a goal state?
Technique: Explore the state-space.



4

6-02-2008 Alexandre David, MVP'08 4

Definitions
A state is the snapshot configuration of a 
system.
The system changes state by taking 
transitions. The rules are given by a 
transition relation.
The set of all states is called the state-
space.
A state S is reachable if there exists a 
sequence of transitions from the initial 
state to S.

This sequence of transition is called trace, 
path, or witness.

A state is typically a tuple with the values of all the variables of the system. 
States also record “where the system” is terms of execution, like the 
instruction pointer, or from a model point-of-view the locations.



5

6-02-2008 Alexandre David, MVP'08 5

Searching, a.k.a. State-space 
Exploration

Is the target
state reachable?
If yes, how?



6

6-02-2008 Alexandre David, MVP'08 6

Exploration Algorithm

S
(state,color)

not explored
(waiting)
explored
(visited)

1: Pick white.
2: Mark it black.
3: Generate its successor states.
4: Add them to S.
5: Mark them white.
6: Repeat until find the goal or

no more white state to pick.



7

6-02-2008 Alexandre David, MVP'08 7

Exploration Algorithm
search(init,target):
if init = target then return true
S={(init,white)}
while White ≠ ∅ do

pick (a,white) ∈ S
S = S[(a,black)/(a,white)]
forall a → a’ do

if a’ ∉ S then
if a’ = target then return true
S = S ∪ (a’,white)

fi
done

done
return false

white = not
explored yet.
black = explored.
White = {(a,c)∈S|
c=white}.
a∈S ⇔ {(b,c)∈S|
b=a} ≠ ∅.
→ = transition.



8

6-02-2008 Alexandre David, MVP'08 8

Correctness
The algorithm explores all possible 
reachable states.

It will terminate if the state-space is finite.
This is our case.
When it terminates, it proves that a state is 
reachable or not.

Problem: State-space explosion.



9

6-02-2008 Alexandre David, MVP'08 9

Technicalities
How to represent S for efficient look-up?

Hash table.

How to pick-up the next state to be 
explored?

FIFO: Breadth-first-search.
LIFO: Depth-first search.
Priority queue: Guided search with heuristics.

?



10

6-02-2008 Alexandre David, MVP'08 10

Search Orderings

Breadth-first-search
(BFS)

1

2 3 4

5 6 7 8 9

10 11 12 13 14

Depth-first-search
(DFS)

1

2

3

4 5

6

7

8

9

10

11

12

13

14

Gives shortest
path but may
be more expensive
than heuristics or
random search.



11

6-02-2008 Alexandre David, MVP'08 11

Clean-up deadlocks – DFS

Depth-first-search
(DFS)

1

2

3

4 5

6

9

10

8 12

14

4 5

3

77

13

11 15



12

6-02-2008 Alexandre David, MVP'08 12

What can it do?
BFS/DFS -b option.
Check reachability properties (depends on 
models).

Detect deadlocks.

Print system -s option.
Print trace to found states.
Can explore millions of states @ 300000+ 
states/sec.

Not a toy!



13

6-02-2008 Alexandre David, MVP'08 13

Design of the Model-Checker(s)

modelchecker.c
The “engine” implementing
the exploration algorithm.

common.h
API to implement,
access to the models.uses

pegs.c

mutex.c

rw.c

Model of a
solitaire game.

Model of a
mutual exclusion
algorithm.

Model of a
multiple-readers,
single-writer algorithm.

implement238

122

model.h

common.c

Red: You are not advised to read.
Orange: You do not need to read.
Green: Read and understand.



14

6-02-2008 Alexandre David, MVP'08 14

rw.c
Multiple readers – single writer protocol.

pages 303-304 in the book.
typo with ‘}’
still a problem after fixing the typo.

Use the –s option to see the system, scale 
the configuration with –r n (readers) and –w 
m (writers).

line_name: statement ⇒ like in the source.



15

6-02-2008 Alexandre David, MVP'08 15

mutex.c
Simple mutual exclusion protocol.

Pettersson’s algorithm.

idle want

waitCS

req1:=1

turn:=2

req2==0 or
turn==1

req1:=0

Process P1

idle want

waitCS

req2:=1

turn:=1

req1==0 or
turn==2

req2:=0

Process P2



16

6-02-2008 Alexandre David, MVP'08 16

pegs.c
Simple game:

initial configuration with n pegs → get 1 left.



17

6-02-2008 Alexandre David, MVP'08 17

Why?
rw.c:

real protocol used in the book
easily scalable, loops etc…

mutex.c:
simple and good for testing races.

pegs.c:
state-graph = wide tree with known height,
fun.



18

6-02-2008 Alexandre David, MVP'08 18

Compilation

modelchecker.c pegs.c mutex.crw.c

modelchecker.o pegs.o mutex.orw.o

pegs mutexrw

+ common.c → common.o



19

6-02-2008 Alexandre David, MVP'08 19

Compilation - pthread

modelchecker.pthread.c pegs.c mutex.crw.c

modelchecker.pthread.o pegs.o mutex.orw.o

pegs.pthread mutex.pthreadrw.pthread

+ utils.pthread.c → utils.pthread.o



20

6-02-2008 Alexandre David, MVP'08 20

Compilation - mpi

modelchecker.mpi.c pegs.c mutex.crw.c

modelchecker.mpi.o pegs.o mutex.orw.o

pegs.mpi mutex.mpirw.mpi

+ utils.mpi.c → utils.mpi.o



21

6-02-2008 Alexandre David, MVP'08 21

Goal
You are given a working model-checker with 
a Makefile.

Modify only modelchecker.pthread.c to parallelize 
it using pthreads.
Modify only modelchecker.mpi.c to parallelize it 
using mpi.

But not now and not all at once.
Skeleton files are provided.



22

6-02-2008 Alexandre David, MVP'08 22

Steps
Now:

apt-get install lam-runtime lam4-dev
Discover the model-checker, make sure you can 
compile & run it.
Understand its structure, read the code.

Later:
Incremental versions with pthread.
A distributed version with MPI.


