
1

Introduction to
Parallel Computing

Alexandre David
1.2.05

http://www.cs.aau.dk/~adavid/teaching/MVP-08/

Welcome.
Web page: schedule, book, exercises, slides, everything about the course. 
Also accessible from my personal web page.
E-mail: adavid@cs.aau.dk, also from my web page.



2

6-02-2008 Alexandre David, MVP'08 2

Presentation of the Course
Parallel Computing

Little on parallel hardware
Mostly on parallel algorithms and design

Models for Parallelism (PRAM…)
Tools for Parallelism (MPI, pthreads…)
15 lectures, 3x30 min + exercises
TA: Claus Thrane crt@cs.aau.dk

Updated from last year, changed content according to feedback and 
discussions with other lecturers.
No overlap with other courses.
Only place in the curriculum where you have a chance to learn about 
parallel programming.

Meaning of the course:
•Models for parallel machines and programs, programming paradigms, etc...
•Tools for parallelism: standard API such as MPI, pthreads, OpenMP (not in 
the course but you have materials in the book).



3

6-02-2008 Alexandre David, MVP'08 3

The Course Book

Introduction to Parallel 
Computing
Covers many aspects on 
parallel computing.
Both basic and advanced 
topics.
I will follow the book but 
not cover it all.
You’ll be lost if you don’t 
follow the lectures.

Claims to be modular and suitable for a wide variety of undergraduate and 
graduate level courses.
Covers traditional algorithms (sorting, graph, searching) and scientific 
computing algorithms (matrix, FFT).
Practical, code examples.
MPI, pthreads, also OpenMP (not in this course): 3 most widely used 
standards for writing portable parallel programs.
Recent (2003) and solid book.
Show the plan of the chapters (Figures/chap1.pdf).



4

6-02-2008 Alexandre David, MVP'08 4

Course & Assignments
Lectures will be alternated between theory 
& practice.
Assignments will be half theory, half 
practice.

6-7 assignments, all compulsory.
Model: complete them until they are good.
Careful: Do not accumulate delay.
2 weeks for completing every assignment.
Examination through assignments.



5

6-02-2008 Alexandre David, MVP'08 5

Goals of the Course
Design, analysis, and implementation of 
parallel algorithms.

Principles of parallel algorithm design.
Analytical modeling of parallel programs.
Tools such as MPI & pthreads.
Some examples.

Main goal (design, analysis, implementation) that needs important notions 
(sub-goals).
Short motivation:
•Hardware: Parallel computing has changed from tightly scalable message 
passing platforms to today’s inexpensive clusters and multiprocessor 
machines.
•Software: Programming models have evolved from custom to standard 
APIs. MPI = standard message passing library, pthreads = thread library, 
OpenMP = directive based models.
Impact on process of design, analysis, and implementation of parallel 
algorithms: What this course is about.



6

6-02-2008 Alexandre David, MVP'08 6

Do We Need Parallelism?
Complexity of parallel programs: How to 
specify and coordinate concurrent tasks?

Are there standards?
Do you need to accelerate applications?

?

?

?

?

race/deadlock/livelock

There is another course dealing with the question of concurrency, in 
particular problems of deadlocks, livelocks, synchronization, condition 
variables, etc… I won’t spend much time on the needed concepts, only what 
I need for this course (more pragmatic and practical approach).
•Specify: How to decompose a problem (most often sequential) into a set of 
parallel tasks to execute?
•Coordinate: Efficiency (control overhead in extra communication) and 
correctness issues (race conditions, deadlocks, livelocks).
Recall of race condition (several execution orderings may yield different 
results with the same program), deadlock (system not responding or doing 
anything), livelock (infinite loop without progress).
Algorithm standards: Actually in terms of API, now there are some.
Need to accelerate: Think of spending 2 years of development when the 
platform is going to be obsolete by the time you are finished.



7

6-02-2008 Alexandre David, MVP'08 7

Trends in Hardware
Everything points towards parallelism from 
multi-core, hyper-threading, multi-threads, 
superscalar, … technologies.
Because

Limits to continue to increment performance 
with single processors.
Other constraints like heat, complexity, yields, 
etc…

Put a product name on all of these technologies to make it more concrete:
•Multi-core: X2 Athlon64, Intel’s dual-core (P4 & new mobile CPU).
•Hyper-threading: Intel’s technology to utilize the CPU better (switch thread 
instead of staying stalled on data).
•Multi-thread: Microsoft Xbox CPU, multithread triple core.
•Superscalar: Every modern GPU and CPU, several instructions in the 
same clock cycle (pipeline, different execution units).
Single processors have implicit lack of parallelism and have bottlenecks 
such as critical data paths and limited memory sub-system.
Example: multi-core recent design adopt simpler architectures replicated 
several times (no out-of-order execution), why? Complexity, efficiency/watt, 
die-size, price transistor/OPS (operation per second).



8

6-02-2008 Alexandre David, MVP'08 8

Arguments for Parallelism
Computational power:

Moore’s law.
Translating transistors into useful OPS.

Memory/disk speed:
Performance/yr: CPU +40%, DRAM +10%.
How to feed data?
What are the problems?

Parallel platforms: larger aggregate 
cache+bandwidth+IPC…

?

•Computational power: The demand for higher and higher computation 
power always grows, Moore’s law is only the technological answer to that 
demand. We want to pursue Moore’s law, that’s why it still holds. The 
question is: How to continue from now on? (with the problems mentioned 
before).
•Memory/disk speed: Overall system performance is defined by CPU speed 
and the ability of the system to feed data to it. We have cheated so far by 
bridging the speed gap with caches that work thanks to the data locality
property of almost all programs. Still we have both problems of latency and 
bandwidth. The same applies to disks (you are familiar with RAID 
technology).
•Parallel platforms: Linear increase in the number of processors of cache, 
bandwidth, etc… in total. The question is: How to use the increased 
resource such that the performance has a linear increase as well?
•Other arguments: Data communication (SETI@home a.k.a. search for 
extraterrestrial intelligence), constraints on location of data & resources that 
require distributed/parallel algorithms.



9

6-02-2008 Alexandre David, MVP'08 9

Scope of Parallel Algorithms
Engineering & design.
Scientific computing.
Commercial (web) applications.
Embedded systems.
Gaming industry.

•Engineering & design: complex physical processes, geometric & 
mathematical modeling in context of parallel computers.
•Scientific applications: human genome sequencing, computational physics 
& chemistry.
•Commercial applications: multiprocessor & cluster machines for web & 
database servers.
•Embedded systems: cars, planes, etc… have many computer systems 
communicating via some network. 90% of computer systems are embedded 
systems.
•Gaming industry: Xbox 360 (triple core CPU + general multi vertex/pixel 
shader engine), PS3 with Cell processor (8 simple computational units + 1 
G5 on one core).


