4.3

- Recall: Standard algorithms for all-to-all broadcast on a ring and a hypercube give the following times:
 - $T_{ring} = (t_s + t_w m)(p-1)$ and $T_{hcube} = t_s \log p + t_w m(p-1)$
 - with the assumption that there is no congestion. If ts=100tw we have $T_{ring} = (100+m)(p-1)t_w$ and $T_{hcube} = (100 \log p + m(p-1))t_w$.
- On a ring, the standard algorithm gives $T_a = T_{ring}$ and the hypercube algorithm suffers from congestion (ratio of bisection width=p/4, we take dimension ≥ 2) for all communications except the one that corresponds to the dimension of the ring. We have a correction factor $f=p(\log p-1)/4 \log p$. For the hypercube we have $T_b=fT_{hcube}$.
- If we look at the ratio T_a/T_b we see that for large messages the ring algorithm is better and for small messages, *depending on p*, the hypercube algorithm may be better.

$$\frac{T_a}{T_b} = \frac{100(p-1) + m(p-1)*4}{(100\log p + m(p-1))*p}$$