4.3

Recall: Standard algorithms for all-to-all broadcast on a ring and a hypercube give the following times:

- $T_{\text {ring }}=\left(t_{s}+t_{w} m\right)(p-1)$ and $T_{\text {hcube }}=t_{s} \log p+t_{w} m(p-1)$
- with the assumption that there is no congestion. If ts=100tw we have $T_{\text {ring }}=(100+m)(p-1) t_{w}$ and $T_{\text {hcube }}=(100 \log p+m(p-1)) t_{w}$.
- On a ring, the standard algorithm gives $T_{a}=T_{\text {ring }}$ and the hypercube algorithm suffers from congestion (ratio of bisection width $=\mathrm{p} / 4$, we take dimension ≥ 2) for all communications except the one that corresponds to the dimension of the ring. We have a correction factor $f=p(\log p-1) / 4 \log p$. For the hypercube we have $T_{b}=f T_{\text {h cube }}$
- If we look at the ratio T_{a} / T_{b} we see that for large messages the ring algorithm is better and for small messages, depending on p, the hypercube algorithm may be better.

$$
\frac{T_{a}}{T_{b}}=\frac{100(p-1)+m(p-1) * 4}{(100 \log p+m(p-1)) * p}
$$

