
1

2.24
Idea of the comparison with minimum congestion mapping: If an interconnection 
network A is mapped to a network B with a congestion r but network B is r times 
faster than A, then B is strictly superior than A (fewer links, at least same 
performance).
The mapping of a hypercube on a mesh follows the inverse of the mesh on the 
hypercube. A sub-cube of √p processors is mapped on each row of the mesh (assume 
a √p*√p mesh). We count the number of hypercube links going from one half of the 
mesh (on a row) to the other half (see Fig. 2.33). Every node of one half has a link to 
another node on the other half. We have √p/2 links. The mesh has one link (no wrap-
around). The congestion on a mesh without wrap-around is √p/2 and with wrap-
around √p/4 (since we have 2 links connecting each half).
We need to check the ratio √p/2 (or √p/4) to compare the hypercube with the mesh. 
√1024/2=16, √1024/4=8. The mesh is 25/2=12.5 times faster than the hypercube so 
a wrap-around mesh is strictly better (at least 8 times faster), not the mesh without 
wrap-around.

3.11
2 ways to see it:

Either count directly with the help of slide 24 lecture 5:
tasks for the first loop n(n-1)/2 to compute the L[j,k] but also U[k,j] + the 
“splitting” of the element of the diagonal (n) + the loop on the smaller square 
matrix (size k at every iteration).

Or recursively: at a given iteration every element of the sub-matrix of size k is 
touched, hence k2 tasks, and you add the count for the previous iteration, and 
you have t(m)=t(m-1)+m2, or the sum of squares directly.

∑∑
=

−

=

=++
− n

i

n

i
iinnn

1

2
1

1

2

2
)1(2

3.12 & 3.13
3.12) Maximum degree of concurrency is given by

Either the first loop: 2(m-1) tasks in parallel (m-1 for L and U),
Or the second loop (m-1)2 tasks in parallel (sub-matrix).
There is a dependency between the first and the second loop so it is the 
max(2(m-1), (m-1)2).

3.13) Critical path length: Let’s check the dependencies. Every 
element in the diagonal (except the first) needs an update from the 
second loop of the algorithm (on the sub-matrix) but its coefficients 
are computed by the first loop. That gives us a sub-path of length 2 
between every “split” of the diagonal element to its L and U parts. 
There are m splits with a sub-path of length 2 in-between. The 
critical path length is then 2(m-1)+m.


