2.24

Idea of the comparison with minimum congestion mapping: If an interconnection network A is mapped to a network B with a congestion r but network B is r times faster than A, then B is strictly superior than A (fewer links, at least same performance).

- The mapping of a hypercube on a mesh follows the inverse of the mesh on the hypercube. A sub-cube of $\sqrt{ } p$ processors is mapped on each row of the mesh (assume
$a \vee p^{*} \sqrt{ }$ p mesh). We count the number of hypercube links going from one half of the mesh (on a row) to the other half (see Fig. 2.33). Every node of one half has a link to another node on the other half. We have $\sqrt{ } \mathrm{p} / 2$ links. The mesh has one link (no wraparound). The congestion on a mesh without wrap-around is $\mathrm{vp} / 2$ and with wraparound $\mathrm{Vp} / 4$ (since we have 2 links connecting each half).
We need to check the ratio $\sqrt{ } \mathrm{p} / 2$ (or $\sqrt{ } \mathrm{p} / 4$) to compare the hypercube with the mesh. $\sqrt{ } 1024 / 2=16, \sqrt{ } 1024 / 4=8$. The mesh is $25 / 2=12.5$ times faster than the hypercube so a wrap-around mesh is strictly better (at least 8 times faster), not the mesh without wrap-around \qquad
\qquad

3.11

= 2 ways to see it:

- Either count directly with the help of slide 24 lecture 5
tasks for the first loop $n(n-1) / 2$ to compute the $L[j, k]$ but also $U[k, j]+$ the "splitting" of the element of the diagonal (n) + the loop on the smaller square
matrix (size k at every iteration).

$$
2 \frac{n(n-1)}{2}+n+\sum_{i=1}^{n-1} i^{2}=\sum_{i=1}^{n} i^{2}
$$

- Or recursively: at a given iteration every element of the sub-matrix of size k is touched hence k^{2} tasks, and you add the count for the previous iteration, and you have $t(m)=t(m-1)+m^{2}$, or the sum of squares directly.
\qquad
\qquad

3.12 \& 3.13

T. 3.12) Maximum degree of concurrency is given by

- Either the first loop: $2(\mathrm{~m}-1)$ tasks in parallel ($\mathrm{m}-1$ for L and U),
- Or the second loop (m-1) ${ }^{2}$ tasks in parallel (sub-matrix).
- There is a dependency between the first and the second loop so it is the $\max \left(2(m-1),(m-1)^{2}\right)$
- 3.13) Critical path length: Let's check the dependencies. Every element in the diagonal (except the first) needs an update from the second loop of the algorithm (on the sub-matrix) but its coefficients are computed by the first loop. That gives us a sub-path of length 2 between every "split" of the diagonal element to its L and U parts. There are m splits with a sub-path of length 2 in-between. The critical path length is then $2(m-1)+m$.

