
1

Dense Matrix Algorithms
(Chapter 8)

Alexandre David
B2-206

2

25-04-2007 Alexandre David, MVP'07 2

Dense Matrix Algorithm
Dense or full matrices: few known zeros.

Other algorithms for sparse matrix.

Square matrices for pedagogical purposes
only – can be generalized.
Natural to have data decomposition.

3.2.2 input/output/intermediate data.
3.4.1 mapping schemes based on data
partitioning.

3

25-04-2007 Alexandre David, MVP'07 3

Today
Matrix*Vector
Matrix*Matrix
Solving systems of linear equations.

The chapter is not just about giving algorithms but also about analyzing them.

4

25-04-2007 Alexandre David, MVP'07 4

Matrix*Vector – Recall

A x y

∑
=

=
n

k
kiki xay

1

Serial algorithm:
n2 multiplications and
addition.

W = n2

Recall: See chapter 5 on analysis. W = problem size = number of basic
computation in the best sequential algorithm to solve the problem.

5

25-04-2007 Alexandre David, MVP'07 5

Matrix*Matrix – Recall

A B C

∑
=

=
n

k
kjikij bac

1

Serial algorithm:
n3 multiplications and
addition.

W = n3

There are better algorithms but the sake of simplicity we consider the straight-
forward computation, which is still a good algorithm, though not the best.

6

25-04-2007 Alexandre David, MVP'07 6

Matrix*Vector – Serial Algorithm

∑
=

=
n

k
kiki xay

1

procedure MAT_Vec(A,x,y)
for i := 0 to n-1 do

y[i] := 0
for k := 0 to n-1 do

y[i] := y[i] + A[i,k]*x[k]
done

done
endproc

How to parallelize?

How to parallelize: Row-wise 1-D, column-wise 1-D, or 2-D partioning.

7

25-04-2007 Alexandre David, MVP'07 7

Matrix*Matrix – Serial Algorithm

∑
=

=
n

k
kjikij bac

1

procedure MAT_MULT(A,B,C)
for i := 0 to n-1 do

for j := 0 to n-1 do
C[i,j] := 0
for k := 0 to n-1 do

C[i,j] := C[i,j] + A[i,k]*B[k,j]
done

done
done

endproc

How to parallelize?

Similar partitioning as for the matrix*vector and block partitioning.

8

25-04-2007 Alexandre David, MVP'07 8

Matrix*Vector – Row-wise 1-D
Partitioning
Initial distribution:

Each process has a row of the n*n matrix.
Each process has an element of the n*1
vector.
Each process is responsible for computing one
element of the result.

9

25-04-2007 Alexandre David, MVP'07 9

Matrix*Vector – 1-D

A x y

n processes

But every process needs the entire vector
⇒ all-to-all broadcast.

10

25-04-2007 Alexandre David, MVP'07 10

All-to-All Broadcast

x

11

25-04-2007 Alexandre David, MVP'07 11

Parallel Computation

A x y

n processes

∑
=

=
n

k
kiki xay

1
in parallel on the n processes.

12

25-04-2007 Alexandre David, MVP'07 12

Example Matrix*Vector
(Program 6.4)

Partition on rows.

Allgather (All-to-all broadcast)

Multiply

13

25-04-2007 Alexandre David, MVP'07 13

Analysis
All-to-all broadcast & multiplications in
Θ(n).
For n processes W=nTP=n2.
⇒ The algorithm is cost-optimal.

A parallel system is cost-optimal iff
pTP=Θ(W).

14

25-04-2007 Alexandre David, MVP'07 14

Performance Metrics
Efficiency E=S/p.

Measure time spent in doing useful work.
Previous sum example: E = Θ(1/logn).

Cost C=pTP.
A.k.a. work or processor-time product.
Note: E=TS/C.
Cost optimal if E is a constant.

Reminder

Reminder from lecture 8.

15

25-04-2007 Alexandre David, MVP'07 15

Using Fewer Processes
Brent’s scheduling principle: It’s possible.
Using p processes:

n/p rows per process.
Communication time = ts logp+tw(n/p)(p-1)
~ ts logp+twn = Θ(n).
Computation: n*n/p.
⇒ pTP = Θ(n2) = W ⇒ It is cost optimal.

16

25-04-2007 Alexandre David, MVP'07 16

Scalability – Recall
Efficiency increases with the size of the
problem.
Efficiency decreases with the number of
processors.
Scalability measures the ability to increase
speedup in function of p.

17

25-04-2007 Alexandre David, MVP'07 17

Isoefficiency Function
For scalable systems efficiency can be kept
constant if T0/W is kept constant.

For a target E

Keep this constant

Isoefficiency function

W=KT0(W,p)

What it means: The isoefficiency function determines the ease with which a
parallel system can maintain its efficiency in function of the number of
processors. A small function means that small increments of the problem size
are enough (to compensate the increase of p), i.e., the system is scalable. A
large function means the problem size must be incremented dramatically to
compensate p, i.e., the system is poorly scalable.
Unscalable system do not have an isoefficiency function.
Isoefficiency function is in function of p.

18

25-04-2007 Alexandre David, MVP'07 18

Is Our Algorithm Scalable?
T0=pTP-W ⇒ T0=tsp logp+twnp.
We want to determine W=KT0. Try with
both terms separately:

W=Ktsp logp.
W=Ktwnp=n2 ⇒ W=(Ktwp)2.
Bound from concurrency: p=O(n) ⇒ W=Ω(p2).
W=Θ(p2) : asymptotic isoefficiency function.
Rate to increase the problem size (in function
of p) to maintain a fixed efficiency: p=Θ(n).

Overhead

19

25-04-2007 Alexandre David, MVP'07 19

Matrix*Vector – 2-D
Matrix n*n partitioned on n*n processes.
Vector n*1 distributed in the last (or 1st

column).
Similarly we want fewer processes: blocks
of (n/√p)2 elements.

20

25-04-2007 Alexandre David, MVP'07 20

Matrix*Vector – 2-D

A x y

Processes in column i need element of the vector in row i.
1. Distribute on diagonal.
2. One-to-all broadcast on columns.
3. Multiplication.
4. All-to-one reduction (+).

21

25-04-2007 Alexandre David, MVP'07 21

Example Matrix*Vector
(Program 6.8)

Partition.

Row sub-topology.
Colum sub-topology.

Distribute vector.

Local multiplication.

Sum reduce on rows.

22

25-04-2007 Alexandre David, MVP'07 22

Which one is better? 1-D or 2-D?

23

25-04-2007 Alexandre David, MVP'07 23

Analysis
Communications:

one-to-one Θ(1) +
one-to-all broadcast Θ(logn) +
all-to-one reduction Θ(logn).

+ multiplications Θ(1).
pTP=Θ(n2 logn) ⇒ not cost-optimal.
Brent’s scheduling principle?

24

25-04-2007 Alexandre David, MVP'07 24

Using Fewer Processes
Blocks of (n/√p)2 elements. Costs:

one to one in ts+twn/√p +
one-to-all broadcast in (ts+twn/√p) log√p +
all-to-one reduction in (ts+twn/√p) log√p +
computations in (n/√p)2.

Total ~ n2/p+ts logp+(twn/√p) logp.
pTP=Θ(n2) ⇒ cost-optimal if…

25

25-04-2007 Alexandre David, MVP'07 25

Scalability Analysis
T0=pTP-W=ts logp+twn√p logp.
As before, isoefficiency analysis:

W=Ktsp logp.
W=Ktwn√p logp=n2 ⇒ W=(Ktw√p logp)2.
Bound from concurrency: p=O(n2) ⇒ W=Ω(p).
W=Θ(p log2p).

p=f(n)? p log2p=Θ(n2) … p=Θ(n2/ log2n).

26

25-04-2007 Alexandre David, MVP'07 26

Which One Is Better?
1-D: TP ~ n2/p+ts logp+twn.
2-D: TP ~ n2/p+ts logp+(twn/√p) logp.

1-D: W=Θ(p2).
2-D: W=Θ(p log2p).

Degree of concurrency…

27

25-04-2007 Alexandre David, MVP'07 27

Block Matrix*Matrix

procedure MAT_MULT(A,B,C)
for i := 0 to n-1 do

for j := 0 to n-1 do
C[i,j] := 0
for k := 0 to n-1 do

C[i,j] := C[i,j] + A[i,k]*B[k,j]
done

done
done

endproc

BLOCK_

q

q
q

q*q blocks of (n/q)*(n/q) submatrices.
Still n3 additions & multiplications.

Similar to conventional matrix multiplication.

28

25-04-2007 Alexandre David, MVP'07 28

A Simple Parallel Algorithm
Map the algorithm to p=q2 processes.
We need all A[i,k] and B[k,j] to compute
the C[i,j].
Steps:

All-to-all broadcast of A[i,k] on rows.
All-to-all broadcast of B[k,j] on columns.
Local multiplications.

29

25-04-2007 Alexandre David, MVP'07 29

Analysis
Costs:

all-to-all √p broadcasts of n2/p elements
= ts log√p+tw(n2/p)(√p-1) *2
+ computations = √p multiplications of
(n/√p)*(n/√p) matrices cost n3/p.
pTP=Θ(n3) for p=O(n2) ⇒ cost-optimal.
Isoefficiency W=Θ(p3/2).

Drawback: memory requirement in n2√p.
Better?

One multiplication of a (n/√p)*(n/√p) matrix costs (n/√p)3 and we have √p of
them (per process).

30

25-04-2007 Alexandre David, MVP'07 30

Cannon’s Algorithm
Idea: re-schedule computations to avoid
contention.

Processes on rows i hold a different A[i,k].
Processes on columns j hold a different B[k,j].
Rotate the matrices ⇒ we need only 2 sub-
matrices per process at any time.
⇒ memory efficient in O(n2).

31

25-04-2007 Alexandre David, MVP'07 31

Align A & B

32

25-04-2007 Alexandre David, MVP'07 32

33

25-04-2007 Alexandre David, MVP'07 33

34

25-04-2007 Alexandre David, MVP'07 34

Analysis
Costs:

2* (A & B) √p-single step shifts =
2(ts+twn2/p)√p +
√p multiplications of (n/√p)*(n/√p) sub-
matrices = n3/p.
Cost-optimal, same isoefficiency function as
previously.

35

25-04-2007 Alexandre David, MVP'07 35

The DNS Algorithm
3-D partitioning!
Cube with faces corresponding to A, B, C.
Internal nodes correspond to multiply
operations Pi,j,k.

Multiplications in time Θ(1).
Additions in time Θ(logn).
Communication…

Can use up to n3 processes – better
concurrency.

DNS: Dekel, Nassimi, and Sahni.

36

25-04-2007 Alexandre David, MVP'07 36

37

25-04-2007 Alexandre David, MVP'07 37

k

j

i

38

25-04-2007 Alexandre David, MVP'07 38

Communication Steps
Move the columns of A & rows of B.
One-to-all broadcast along j & i axis.
All-to-one reduction (+) along k axis.
Communication on groups of n processes,
in time Θ(logn).
Not cost optimal for n3 processes.

39

25-04-2007 Alexandre David, MVP'07 39

Brent’s Scheduling Principle

If a parallel computation consists of
k phases
taking time t1,t2,…,tk
using a1,a2,…,ak processors
in phases 1,2,…,k

then the computation can be done in time
O(a/p+t) using p processors where
t =sum(ti), a =sum(aiti).

Theorem

What it means: same time as the original plus an overhead. If the number of
processors increases then we decrease the overhead. The overhead
corresponds to simulating the ai with p. What it really means: It is possible to
make algorithms optimal with the right amount of processors (provided that t*p
has the same order of magnitude of tsequential). That gives you a bound on the
number of needed processors.
It’s a scheduling principle to reduce the number of physical processors needed
by the algorithm and increase utilization. It does not do miracles.
Proof: i’th phase, p processors simulate ai processors. Each of them simulate
at most ceil(ai/p)≤ai/p+1, which consumes time ti at a constant factor for each
of them.

40

25-04-2007 Alexandre David, MVP'07 40

Look At One Dimension
k phases = logn.
ti = constant time.
ai = n/2,n/4,…,1 processors.
With q processors we can use time
O(logn+n/q).
Choose q=O(n/ logn) → time O(logn) and
this is optimal!

3-D: use p=O(n3/ log3n)

p=q3

Note: n is a power of 2 to simplify. Recall the definition of optimality to
conclude that it is optimal indeed. This does not gives us an implementation,
but almost.
Divide and conquer same as compress and iterate for the exercise.

41

25-04-2007 Alexandre David, MVP'07 41

Systems of Linear Equations

A x b

a0,0x0+a0,1x1+…+a0,n-1xn-1=b0,
…
an-1,0x0+an-1,1x1+…+an-1,n-1xn-1=bn-1

42

25-04-2007 Alexandre David, MVP'07 42

Solving Systems of Linear
Equations
Step 1: Reduce the original system to

Step2:
Solve & back-substitute from xn-1 to x0.

x yU

43

25-04-2007 Alexandre David, MVP'07 43

Technical Issues
Non singular matrices.
Numerical precision (is the solution
numerically stable) → permute columns.

In particular no division by zero, thanks.
Procedure known as Gaussian elimination with
partial pivoting.

44

25-04-2007 Alexandre David, MVP'07 44

Gaussian Elimination

W=2n3/3

45

25-04-2007 Alexandre David, MVP'07 45

Parallel Gaussian Elimination
1-D partitioning:

1 process/row.
Process i computes A[i,*].
Cost (+communication) = Θ(n3 logn) not cost
optimal.

All processes work on the same iteration.
k+1 iteration starts when kth iteration is
complete.
Improve: pipelined/asynchronous version.

46

25-04-2007 Alexandre David, MVP'07 46

Pipelined Version

Pk forwards & does not wait.

Pjs forward & do not wait.

47

25-04-2007 Alexandre David, MVP'07 47

Pipelined Gaussian Elimination
No logn for communication (no broadcast)
and the rest of the computations are the
same.
The pipelined version is cost-optimal.
Fewer processes:

Block 1-D partitioning, loss of efficiency due to
idle processes (load balance problem).
Cyclic 1-D partitioning better.

48

25-04-2007 Alexandre David, MVP'07 48

Gaussian Elimination – 2-D
Partitioning
Similar as before.
Pipelined version cost-optimal.
More scalable than 1-D.

49

25-04-2007 Alexandre David, MVP'07 49

Finally Back-Substitution

Intrinsically serial algorithm.
Pipelined parallel version not
cost optimal.
Does not matter because of
lower order of magnitude.

