
1

(How to Implement)
Basic Communication
Operations

Alexandre David
B2-206

2

21+23-03-2007 Alexandre David, MVP'07 2

Overview
One-to-all broadcast & all-to-one reduction
(4.1).
All-to-all broadcast and reduction (4.2).
All-reduce and prefix-sum operations (4.3).
Scatter and Gather (4.4).
All-to-All Personalized Communication (4.5).
Circular Shift (4.6).
Improving the Speed of Some
Communication Operations (4.7).

3

21+23-03-2007 Alexandre David, MVP'07 3

Collective Communication
Operations
Represent regular communication patterns.
Used extensively in most data-parallel
algorithms.
Critical for efficiency.
Available in most parallel libraries.
Very useful to “get started” in parallel
processing.

Collective: involve group of processors.
The efficiency of data-parallel algorithms depends on the efficient
implementation of these operations.
Recall: ts+mtw time for exchanging a m-word message with cut-through
routing.
All processes participate in a single global interaction operation or subsets of
processes in local interactions.
Goal of this chapter: good algorithms to implement commonly used
communication patterns.

4

21+23-03-2007 Alexandre David, MVP'07 4

Reminder
Result from previous analysis:

Data transfer time is roughly the same
between all pairs of nodes.
Homogeneity true on modern hardware
(randomized routing, cut-through routing…).

ts+mtw
Adjust tw for congestion: effective tw.

Model: bidirectional links, single port.
Communication with point-to-point
primitives.

5

21+23-03-2007 Alexandre David, MVP'07 5

Broadcast/Reduction
One-to-all broadcast:

Single process sends identical data to all (or
subset of) processes.

All-to-one reduction:
Dual operation.
P processes have m words to send to one
destination.
Parts of the message need to be combined.

Reduction can be used to find the sum, product, maximum, or minimum of sets
of nmbers.

6

21+23-03-2007 Alexandre David, MVP'07 6

Broadcast/Reduction

Broadcast Reduce

This is the logical view, what happens from the programmer’s perspective.

7

21+23-03-2007 Alexandre David, MVP'07 7

One-to-All Broadcast –
Ring/Linear Array
Naïve approach: send sequentially.

Bottleneck.
Poor utilization of the network.

Recursive doubling:
Broadcast in logp steps (instead of p).
Divide-and-conquer type of algorithm.
Reduction is similar.

Source process is the bottleneck. Poor utilization: Only connections between
single pairs of nodes are used at a time.
Recursive doubling: All processes that have the data can send it again.

8

21+23-03-2007 Alexandre David, MVP'07 8

Recursive Doubling

0 1 2 3

7 6 5 4

1

4

2

6

2

2

3 3

33

1 3

7 5

Note:
•The nodes do not snoop the messages going “through” them. Messages are
forwarded but the processes are not notified of this because they are not
destined to them.
•Choose carefully destinations: furthest.
•Reduction symmetric: Accumulate results and send with the same pattern.

9

21+23-03-2007 Alexandre David, MVP'07 9

Example: Matrix*Vector
1) 1->all

2) Compute

3) All->1

Although we have a matrix & a vector the broadcast are done on arrays.

10

21+23-03-2007 Alexandre David, MVP'07 10

One-to-All Broadcast – Mesh
Extensions of the linear array algorithm.

Rows & columns = arrays.
Broadcast on a row, broadcast on columns.
Similar for reductions.
Generalize for higher dimensions (cubes…).

11

21+23-03-2007 Alexandre David, MVP'07 11

Broadcast on a Mesh

1. Broadcast like linear array.
2. Every node on the linear array has the data and broadcast on the columns

with the linear array algorithm, in parallel.

12

21+23-03-2007 Alexandre David, MVP'07 12

One-to-All Broadcast –
Hypercube
Hypercube with 2d nodes = d-dimensional
mesh with 2 nodes in each direction.
Similar algorithm in d steps.
Also in logp steps.
Reduction follows the same pattern.

13

21+23-03-2007 Alexandre David, MVP'07 13

Broadcast on a Hypercube

Better for congestion: Use different links every time. Forwarding in parallel
again.

14

21+23-03-2007 Alexandre David, MVP'07 14

All-to-One Broadcast – Balanced
Binary Tree
Processing nodes = leaves.
Hypercube algorithm maps well.
Similarly good w.r.t. congestion.

15

21+23-03-2007 Alexandre David, MVP'07 15

Broadcast on a Balanced Binary
Tree

Divide-and-conquer type of algorithm again.

16

21+23-03-2007 Alexandre David, MVP'07 16

Algorithms
So far we saw pictures.
Not enough to implement.
Precise description

to implement.
to analyze.

Description for hypercube.
Execute the following procedure on all the
nodes.

For sake of simplicity, the number of nodes is a power of 2.

17

21+23-03-2007 Alexandre David, MVP'07 17

Broadcast Algorithm

000 001
101

100

010

110 111

011

111

011 001 000

011

011

001

001 000

000

000
000

Current dimension

my_id is the label of the node the procedure is executed on. The procedure
performs d communication steps, one along each dimension of the hypercube.
Nodes with zero in i least significant bits (of their labels) participate in the
communication.

18

21+23-03-2007 Alexandre David, MVP'07 18

Broadcast Algorithm

000 001
101

100

010

110 111

011

001 000

my_id is the label of the node the procedure is executed on. The procedure
performs d communication steps, one along each dimension of the hypercube.
Nodes with zero in i least significant bits (of their labels) participate in the
communication.

19

21+23-03-2007 Alexandre David, MVP'07 19

Broadcast Algorithm

000 001
101

100

010

110 111

011

000

my_id is the label of the node the procedure is executed on. The procedure
performs d communication steps, one along each dimension of the hypercube.
Nodes with zero in i least significant bits (of their labels) participate in the
communication.
Notes:
•Every node has to know when to communicate, i.e., call the procedure.
•The procedure is distributed and requires only point-to-point synchronization.
•Only from node 0.

20

21+23-03-2007 Alexandre David, MVP'07 20

Algorithm For Any Source

XOR the source = renaming relative to the source. Still works because of the
sub-cube property: changing 1 bit = navigate on one dimension, keep a set of
equal bits = sub-cube.

21

21+23-03-2007 Alexandre David, MVP'07 21

Reduce Algorithm

In a nutshell:
reverse the previous one.

22

21+23-03-2007 Alexandre David, MVP'07 22

Cost Analysis

p processes → logp steps (point-to-point
transfers in parallel).
Each transfer has a time cost of
ts+twm.
Total time: T=(ts+twm) logp.

23

21+23-03-2007 Alexandre David, MVP'07 23

All-to-All Broadcast and
Reduction
Generalization of broadcast:

Each processor is a source and destination.
Several processes broadcast different
messages.

Used in matrix multiplication (and matrix-
vector multiplication).
Dual: all-to-all reduction.

How to do it?
If performed naively, it may take up to p times as long as a one-to-all
broadcast (for p processors).
Possible to concatenate all messages that are going through the same path
(reduce time because fewer ts).

24

21+23-03-2007 Alexandre David, MVP'07 24

All-to-All Broadcast and
Reduction

25

21+23-03-2007 Alexandre David, MVP'07 25

All-to-All Broadcast – Rings

0 1 2 3

7 6 5 446

21 3

7 5

0 1 2 3

4567

0 1 2

3456

7 7 0 1

2345

6

etc…

All communication links can be kept busy until the operation is complete
because each node has some information to pass. One-to-all in logp steps, all-
to-all in p-1 steps instead of p logp (naïve).
How to do it for linear arrays? If we have bidirectional links (assumption from
the beginning), we can use the same procedure.

26

21+23-03-2007 Alexandre David, MVP'07 26

All-to-All Broadcast Algorithm

Ring: mod p.
Receive & send – point-to-point.
Initialize the loop.

Forward msg.
Accumulate result.

27

21+23-03-2007 Alexandre David, MVP'07 27

All-to-All Reduce Algorithm

Accumulate and forward.

Last message for my_id.

28

21+23-03-2007 Alexandre David, MVP'07 28

1 2 3 4

5670

All-to-All Reduce – Rings

0 1 2 3

7 6 5 446

21 3

7 5

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1

2 3 4 5

670

2 3 4 5

6701

29

21+23-03-2007 Alexandre David, MVP'07 29

All-to-All Reduce – Rings

0 1 2 3

7 6 5 446

21 3

7 5

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

12

3 4 5 6

702

3 4 5 6

7012 1 0 7

6543

p-1 steps.

30

21+23-03-2007 Alexandre David, MVP'07 30

All-to-All Broadcast – Meshes
Two phases:

All-to-all on rows – messages size m.
Collect sqrt(p) messages.

All-to-all on columns – messages size
sqrt(p)*m.

31

21+23-03-2007 Alexandre David, MVP'07 31

All-to-All Broadcast – Meshes

32

21+23-03-2007 Alexandre David, MVP'07 32

Algorithm

33

21+23-03-2007 Alexandre David, MVP'07 33

All-to-All Broadcast -
Hypercubes
Generalization of the mesh algorithm to
logp dimensions.
Message size doubles at every step.
Number of steps: logp.

Remember the 2 extremes:
•Linear array: p nodes per (1) dimension – p1.
•Hypercubes: 2 nodes per logp dimensions – 2logp.
And in between 2-D mesh sqrt(p) nodes per (2) dimensions – sqrt(p)2.

34

21+23-03-2007 Alexandre David, MVP'07 34

All-to-All Broadcast – Hypercubes

35

21+23-03-2007 Alexandre David, MVP'07 35

Algorithm

Loop on the dimensions

Exchange messages

Forward (double size)

At every step we have a broadcast on sub-cubes. The size of the sub-cubes
doubles at every step and all the nodes exchange their messages.

36

21+23-03-2007 Alexandre David, MVP'07 36

All-to-All Reduction – Hypercubes

Similar pattern
in reverse order.

Combine results

37

21+23-03-2007 Alexandre David, MVP'07 37

Cost Analysis (Time)
Ring:

T=(ts + twm)(p-1).
Mesh:

T=(ts + twm)(√p-1)+(ts + twm√p) (√p-1)
= 2ts(√p – 1) + twm(p-1).

Hypercube:
logp steps
message of size 2i-1m.

Lower bound for the communication time of all-to-all broadcast for parallel
computers on which a node can communicate on only one of its ports at a time
= twm(p-1). Each node receives at least m(p-1) words of data. That’s for any
architecture.
The straight-forward algorithm for the simple ring architecture is interesting: It
is a sequence of p one-to-all broadcasts with different sources every time. The
broadcasts are pipelined. That’s common in parallel algorithms.
We cannot use the hypercube algorithm on smaller dimension topologies
because of congestion.

38

21+23-03-2007 Alexandre David, MVP'07 38

Dense to Sparser: Congestion

Contention because communication is done on links with single ports.
Contention is in the sense of the access to the link. The result is congestion on
the traffic.

39

21+23-03-2007 Alexandre David, MVP'07 39

All-Reduce
Each node starts with a buffer of size m.
The final result is the same combination of
all buffers on every node.
Same as all-to-one reduce + one-to-all
broadcast.
Different from all-to-all reduce.

1 2 3 4 1234 1234 1234 1234

All-to-all reduce combines p different messages on p different nodes. All-
reduce combines 1 message on p different nodes.

40

21+23-03-2007 Alexandre David, MVP'07 40

All-Reduce Algorithm
Use all-to-all broadcast but

Combine messages instead of concatenating
them.
The size of the messages does not grow.
Cost (in logp steps): T=(ts+twm) logp.

41

21+23-03-2007 Alexandre David, MVP'07 41

Prefix-Sum
Given p numbers n0,n1,…,np-1 (one on each
node), the problem is to compute the
sums sk = ∑i

k
= 0 ni for all k between 0 and

p-1.
Initially, nk is on the node labeled k, and at
the end, the same node holds Sk.

This is a reminder.

42

21+23-03-2007 Alexandre David, MVP'07 42

Prefix-Sum Algorithm

All-reduce

Prefix-sum

43

21+23-03-2007 Alexandre David, MVP'07 43

Prefix-Sum

0 1

2 3

4

6 7

5

0 1

54

2

6 7

3

0 1

5

2

7

3

4

6 67

45

01

6

4

0

23

2

1 0

3 2

5 4

7 6

0 1

2 3

4 5

6 7

1 00 1

4 5 5 4

Buffer = all-reduce sum

Figure in the book is messed up.

44

21+23-03-2007 Alexandre David, MVP'07 44

Scatter and Gather
Scatter: A node sends a unique message
to every other node – unique per node.
Gather: Dual operation but the target node
does not combine the messages into one.

0 1 2 … 0 1 2 …

M0 M0

M1

M1

M2

M2

Scatter

Gather

Do you see the difference with one-to-all broadcast and all-to-one reduce?
Communication pattern similar.
Scatter = one-to-all personalized communication.

45

21+23-03-2007 Alexandre David, MVP'07 45

The pattern of communication is identical with one-to-all broadcast but the size
and the content of the messages are different. Scatter is the reverse operation.
This algorithm can be applied for other topologies.
How many steps? What’s the cost?

46

21+23-03-2007 Alexandre David, MVP'07 46

Cost Analysis
Number of steps: logp.
Size transferred: pm/2, pm/4,…,m.

Geometric sum

Cost T=tslogp+twm(p-1).
)222(

1)
2
11(2)

2
11(2

2
...

42

2
11

2
11

2
...

42

log11

1

1

p

pp
p

pppppp

ppppp

pn

nn

n

n

==

−=−−=−−=+++

−

−
=++++

++

+

+

The term twm(p-1) is a lower bound for any topology because the message of
size m has to be transmitted to p-1 nodes, which gives the lower bound of
m(p-1) words of data.

47

21+23-03-2007 Alexandre David, MVP'07 47

All-to-All Personalized
Communication
Each node sends a distinct message to
every other node.

0 1 2 … 0 1 2 …

M0,0

M0,1

M0,2

M0,0 M0,1 M0,2M1,0

M1,1

M1,2

M1,0 M1,1 M1,2

M2,0

M2,1

M2,2 M2,0 M2,1 M2,2

See the difference with all-to-all broadcast?
All-to-all personalized communication = total exchange.
Result = transpose of the input (if seen as a matrix).

48

21+23-03-2007 Alexandre David, MVP'07 48

Example: Transpose

49

21+23-03-2007 Alexandre David, MVP'07 49

Total Exchange on a Ring

0

5

21

34

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

1 2 3 4 5 0 2 3 4 5

0 1 3 4 50 1 2 4 50 1 2 3 5

0 1 2 3 4

0

1

2

3

4

5

50

21+23-03-2007 Alexandre David, MVP'07 50

Total Exchange on a Ring

0

5

21

4 3

0
0

1
1

2
2

3
3

4
4

5
5 0 1 4 5

0 1 2 5

0 1 2 3 1 2 3 4 2 3 4 5

0 3 4 5

0

1

2

3

4

5

51

21+23-03-2007 Alexandre David, MVP'07 51

Cost Analysis
Number of steps: p-1.
Size transmitted: m(p-1),m(p-2)…,m.

)1)(2/()1(
1

1

−+=+−= ∑
−

=

pmpttmitptT ws

p

i
ws

Optimal

In average we transmit mp/2 words, whereas the linear all-to-all transmits m
words. If we make this substitution, we have the same cost as the previous
linear array procedure. To really see optimality we have to check the lowest
possible needed data transmission and compare it to T.
Average distance a packet travels = p/2. There are p nodes that need to
transmit m(p-1) words. Total traffic = m(p-1)*p/2*p. Number of link that support
the load = p, to communication time ≥ twm(p-1)p/2.

52

21+23-03-2007 Alexandre David, MVP'07 52

Total Exchange on a Mesh

0 1 2

3 4 5

6 7 8

We use the procedure of the ring/array.

53

21+23-03-2007 Alexandre David, MVP'07 53

Total Exchange on a Mesh

0 1 2

3 4 5

6 7 8

We use the procedure of the ring/array.

54

21+23-03-2007 Alexandre David, MVP'07 54

Total Exchange on a Mesh

0 1 2

3 4 5

6 7 8

We use the procedure of the ring/array.

55

21+23-03-2007 Alexandre David, MVP'07 55

Cost Analysis
Substitute p by √p (number of nodes per
dimension).
Substitute message size m by m√p.
Cost is the same for each dimension.
T=(2ts+twmp)(√p-1)

We have p(√p-1)m words transferred, looks worse than lower bound in (p-1)m
but no congestion. Notice that the time for data rearrangement is not taken into
account. It is almost optimal (by a factor 4), see exercise.

56

21+23-03-2007 Alexandre David, MVP'07 56

Total Exchange on a Hypercube
Generalize the mesh algorithm to logp
steps = number of dimensions, with 2
nodes per dimension.
Same procedure as all-to-all broadcast.

57

21+23-03-2007 Alexandre David, MVP'07 57

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

58

21+23-03-2007 Alexandre David, MVP'07 58

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

59

21+23-03-2007 Alexandre David, MVP'07 59

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

60

21+23-03-2007 Alexandre David, MVP'07 60

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

61

21+23-03-2007 Alexandre David, MVP'07 61

Cost Analysis
Number of steps: logp.
Size transmitted per step: pm/2.
Cost: T=(ts+twmp/2) logp.
Optimal?
Each node sends and receives m(p-1) words.
Average distance = (logp)/2. Total traffic =
p*m(p-1)* logp/2.
Number of links = p logp/2.
Time lower bound = twm(p-1).

NO

Notes:
1. No congestion.
2. Bi-directional communication.
3. How to conclude if an algorithm is optimal or not: Check the possible

lowest bound and see if the algorithm reaches it.

62

21+23-03-2007 Alexandre David, MVP'07 62

An Optimal Algorithm
Have every pair of nodes communicate
directly with each other – p-1
communication steps – but without
congestion.
At jth step node i communicates with node
(i xor j) with E-cube routing.

63

21+23-03-2007 Alexandre David, MVP'07 63

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

64

21+23-03-2007 Alexandre David, MVP'07 64

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

65

21+23-03-2007 Alexandre David, MVP'07 65

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

66

21+23-03-2007 Alexandre David, MVP'07 66

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

67

21+23-03-2007 Alexandre David, MVP'07 67

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

68

21+23-03-2007 Alexandre David, MVP'07 68

Total Exchange on a Hypercube

0 1

2 3

4 5

6 7

Etc…

Point: Transmit less, only to the needed node, and avoid congestion with E-
cube routing.

69

21+23-03-2007 Alexandre David, MVP'07 69

Cost Analysis
Remark: Transmit less, only what is
needed, but more steps.
Number of steps: p-1.
Transmission: size m per step.
Cost: T=(ts+twm)(p-1).
Compared withT=(ts+twmp/2) logp.
Previous algorithm better for small
messages.

This algorithm is now optimal: It reaches the lowest bound.

70

21+23-03-2007 Alexandre David, MVP'07 70

Circular Shift
It’s a particular permutation.
Circular q-shift: Node i sends data to node
(i+q) mod p (in a set of p nodes).
Useful in some matrix operations and
pattern matching.
Ring: intuitive algorithm in min{q,p-q}
neighbor to neighbor communication
steps. Why?

A permutation = a redistribution in a set.
You can call the shift a rotation in fact.

71

21+23-03-2007 Alexandre David, MVP'07 71

q mod √p on rows
compensate
⎣q / √p⎦ on colums

Circular 5-shift
on a mesh.

72

21+23-03-2007 Alexandre David, MVP'07 72

Circular Shift on a Hypercube
Map a linear array with 2d nodes onto a
hypercube of dimension d.
Expand q shift as a sum of powers of 2
(e.g. 5-shift = 20+22).
Perform the decomposed shifts.
Use bi-directional links for “forward” (shift
itself) and “backward” (rotation part)…
logp steps.

Backward and forward my be misleading in the book.
Interesting but not best solution, no idea why it’s mentioned if the optimal
solution is simpler.

73

21+23-03-2007 Alexandre David, MVP'07 73

Or better:
Direct
E-cube routing.
q-shifts on a
8-node
hypercube.

Exercise: Check the E-cube routing and convince me that there is no
congestion.
Communication time = ts+twm in one step.

74

21+23-03-2007 Alexandre David, MVP'07 74

Improving Performance
So far messages of size m were not split.
If we split them into p parts:

One-to-all broadcast = scatter + all-to-all
broadcast of messages of size m/p.
All-to-one reduction = all-to-all reduce +
scatter of messages of size m/p.
All-reduce = all-to-all reduction + all-to-all
broadcast of messages of size m/p.

