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Overview
One-to-all broadcast & all-to-one reduction 
(4.1).
All-to-all broadcast and reduction (4.2).
All-reduce and prefix-sum operations (4.3).
Scatter and Gather (4.4).
All-to-All Personalized Communication (4.5).
Circular Shift (4.6).
Improving the Speed of Some 
Communication Operations (4.7).
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Collective Communication 
Operations
Represent regular communication patterns.
Used extensively in most data-parallel 
algorithms.
Critical for efficiency.
Available in most parallel libraries.
Very useful to “get started” in parallel 
processing.

Collective: involve group of processors.
The efficiency of data-parallel algorithms depends on the efficient 
implementation of these operations.
Recall: ts+mtw time for exchanging a m-word message with cut-through 
routing.
All processes participate in a single global interaction operation or subsets of 
processes in local interactions.
Goal of this chapter: good algorithms to implement commonly used
communication patterns.
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Reminder
Result from previous analysis:

Data transfer time is roughly the same 
between all pairs of nodes.
Homogeneity true on modern hardware 
(randomized routing, cut-through routing…).

ts+mtw
Adjust tw for congestion: effective tw.

Model: bidirectional links, single port.
Communication with point-to-point 
primitives.
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Broadcast/Reduction
One-to-all broadcast:

Single process sends identical data to all (or 
subset of) processes.

All-to-one reduction:
Dual operation.
P processes have m words to send to one 
destination.
Parts of the message need to be combined.

Reduction can be used to find the sum, product, maximum, or minimum of sets 
of nmbers.
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Broadcast/Reduction

Broadcast Reduce

This is the logical view, what happens from the programmer’s perspective.
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One-to-All Broadcast –
Ring/Linear Array
Naïve approach: send sequentially.

Bottleneck.
Poor utilization of the network.

Recursive doubling:
Broadcast in logp steps (instead of p).
Divide-and-conquer type of algorithm.
Reduction is similar. 

Source process is the bottleneck. Poor utilization: Only connections between 
single pairs of nodes are used at a time.
Recursive doubling: All processes that have the data can send it again.
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Recursive Doubling
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Note:
•The nodes do not snoop the messages going “through” them. Messages are 
forwarded but the processes are not notified of this because they are not 
destined to them.
•Choose carefully destinations: furthest.
•Reduction symmetric: Accumulate results and send with the same pattern.
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Example: Matrix*Vector
1) 1->all

2) Compute

3) All->1

Although we have a matrix & a vector the broadcast are done on arrays.
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One-to-All Broadcast – Mesh
Extensions of the linear array algorithm.

Rows & columns = arrays.
Broadcast on a row, broadcast on columns.
Similar for reductions.
Generalize for higher dimensions (cubes…).
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Broadcast on a Mesh

1. Broadcast like linear array.
2. Every node on the linear array has the data and broadcast on the columns 

with the linear array algorithm, in parallel.
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One-to-All Broadcast –
Hypercube
Hypercube with 2d nodes = d-dimensional 
mesh with 2 nodes in each direction.
Similar algorithm in d steps.
Also in logp steps.
Reduction follows the same pattern.
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Broadcast on a Hypercube

Better for congestion: Use different links every time. Forwarding in parallel 
again.
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All-to-One Broadcast – Balanced 
Binary Tree
Processing nodes = leaves.
Hypercube algorithm maps well.
Similarly good w.r.t. congestion.
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Broadcast on a Balanced Binary 
Tree

Divide-and-conquer type of algorithm again.
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Algorithms
So far we saw pictures.
Not enough to implement.
Precise description

to implement.
to analyze.

Description for hypercube.
Execute the following procedure on all the 
nodes.

For sake of simplicity, the number of nodes is a power of 2.



17

21+23-03-2007 Alexandre David, MVP'07 17

Broadcast Algorithm
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my_id is the label of the node the procedure is executed on. The procedure 
performs d communication steps, one along each dimension of the hypercube.
Nodes with zero in i least significant bits (of their labels) participate in the 
communication.
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Broadcast Algorithm
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my_id is the label of the node the procedure is executed on. The procedure 
performs d communication steps, one along each dimension of the hypercube.
Nodes with zero in i least significant bits (of their labels) participate in the 
communication.
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Broadcast Algorithm
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my_id is the label of the node the procedure is executed on. The procedure 
performs d communication steps, one along each dimension of the hypercube.
Nodes with zero in i least significant bits (of their labels) participate in the 
communication.
Notes:
•Every node has to know when to communicate, i.e., call the procedure.
•The procedure is distributed and requires only point-to-point synchronization.
•Only from node 0.
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Algorithm For Any Source

XOR the source = renaming relative to the source. Still works because of the 
sub-cube property: changing 1 bit = navigate on one dimension, keep a set of 
equal bits = sub-cube.
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Reduce Algorithm

In a nutshell:
reverse the previous one.
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Cost Analysis

p processes → logp steps (point-to-point
transfers in parallel).
Each transfer has a time cost of
ts+twm.
Total time: T=(ts+twm) logp.
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All-to-All Broadcast and 
Reduction
Generalization of broadcast:

Each processor is a source and destination.
Several processes broadcast different 
messages.

Used in matrix multiplication (and matrix-
vector multiplication).
Dual: all-to-all reduction.

How to do it?
If performed naively, it may take up to p times as long as a one-to-all 
broadcast (for p processors).
Possible to concatenate all messages that are going through the same path 
(reduce time because fewer ts).
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All-to-All Broadcast and 
Reduction
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All-to-All Broadcast – Rings
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etc…

All communication links can be kept busy until the operation is complete 
because each node has some information to pass. One-to-all in logp steps, all-
to-all in p-1 steps instead of p logp (naïve).
How to do it for linear arrays? If we have bidirectional links (assumption from 
the beginning), we can use the same procedure.
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All-to-All Broadcast Algorithm

Ring: mod p.
Receive & send – point-to-point.
Initialize the loop.

Forward msg.
Accumulate result.
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All-to-All Reduce Algorithm

Accumulate and forward.

Last message for my_id.
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All-to-All Reduce – Rings
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All-to-All Reduce – Rings
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p-1 steps.
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All-to-All Broadcast – Meshes
Two phases:

All-to-all on rows – messages size m.
Collect sqrt(p) messages.

All-to-all on columns – messages size 
sqrt(p)*m.
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All-to-All Broadcast – Meshes
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Algorithm
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All-to-All Broadcast -
Hypercubes
Generalization of the mesh algorithm to 
logp dimensions.
Message size doubles at every step.
Number of steps: logp.

Remember the 2 extremes:
•Linear array: p nodes per (1) dimension – p1.
•Hypercubes: 2 nodes per logp dimensions – 2logp.
And in between 2-D mesh sqrt(p) nodes per (2) dimensions – sqrt(p)2.
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All-to-All Broadcast – Hypercubes
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Algorithm

Loop on the dimensions

Exchange messages

Forward (double size)

At every step we have a broadcast on sub-cubes. The size of the sub-cubes 
doubles at every step and all the nodes exchange their messages.
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All-to-All Reduction – Hypercubes

Similar pattern
in reverse order.

Combine results
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Cost Analysis (Time)
Ring:

T=(ts + twm)(p-1).
Mesh:

T=(ts + twm)(√p-1)+(ts + twm√p) (√p-1)
= 2ts(√p – 1) + twm(p-1).

Hypercube:
logp steps
message of size 2i-1m.

Lower bound for the communication time of all-to-all broadcast for parallel 
computers on which a node can communicate on only one of its ports at a time 
= twm(p-1). Each node receives at least m(p-1) words of data. That’s for any
architecture.
The straight-forward algorithm for the simple ring architecture is interesting: It 
is a sequence of p one-to-all broadcasts with different sources every time. The 
broadcasts are pipelined. That’s common in parallel algorithms.
We cannot use the hypercube algorithm on smaller dimension topologies 
because of congestion.
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Dense to Sparser: Congestion

Contention because communication is done on links with single ports. 
Contention is in the sense of the access to the link. The result is congestion on 
the traffic.
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All-Reduce
Each node starts with a buffer of size m.
The final result is the same combination of 
all buffers on every node.
Same as all-to-one reduce + one-to-all 
broadcast.
Different from all-to-all reduce.

1 2 3 4 1234 1234 1234 1234

All-to-all reduce combines p different messages on p different nodes. All-
reduce combines 1 message on p different nodes.
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All-Reduce Algorithm
Use all-to-all broadcast but

Combine messages instead of concatenating 
them.
The size of the messages does not grow.
Cost (in logp steps): T=(ts+twm) logp.
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Prefix-Sum
Given p numbers n0,n1,…,np-1 (one on each 
node), the problem is to compute the 
sums sk = ∑i

k
= 0 ni for all k between 0 and 

p-1. 
Initially, nk is on the node labeled k, and at 
the end, the same node holds Sk.

This is a reminder.
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Prefix-Sum Algorithm

All-reduce

Prefix-sum
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Prefix-Sum
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Buffer = all-reduce sum

Figure in the book is messed up.
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Scatter and Gather
Scatter: A node sends a unique message 
to every other node – unique per node.
Gather: Dual operation but the target node 
does not combine the messages into one.

0 1 2 … 0 1 2 …

M0 M0

M1

M1

M2

M2

Scatter

Gather

Do you see the difference with one-to-all broadcast and all-to-one reduce? 
Communication pattern similar.
Scatter = one-to-all personalized communication.
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The pattern of communication is identical with one-to-all broadcast but the size 
and the content of the messages are different. Scatter is the reverse operation. 
This algorithm can be applied for other topologies.
How many steps? What’s the cost?
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Cost Analysis
Number of steps: logp.
Size transferred: pm/2, pm/4,…,m.

Geometric sum

Cost T=tslogp+twm(p-1).
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The term twm(p-1) is a lower bound for any topology because the message of 
size m has to be transmitted to p-1 nodes, which gives the lower bound of 
m(p-1) words of data.
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All-to-All Personalized 
Communication
Each node sends a distinct message to 
every other node.

0 1 2 … 0 1 2 …

M0,0

M0,1

M0,2

M0,0 M0,1 M0,2M1,0

M1,1

M1,2

M1,0 M1,1 M1,2

M2,0

M2,1

M2,2 M2,0 M2,1 M2,2

See the difference with all-to-all broadcast?
All-to-all personalized communication = total exchange.
Result = transpose of the input (if seen as a matrix).
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Example: Transpose
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Total Exchange on a Ring
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Total Exchange on a Ring
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Cost Analysis
Number of steps: p-1.
Size transmitted: m(p-1),m(p-2)…,m.
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Optimal

In average we transmit mp/2 words, whereas the linear all-to-all transmits m 
words. If we make this substitution, we have the same cost as the previous 
linear array procedure. To really see optimality we have to check the lowest 
possible needed data transmission and compare it to T.
Average distance a packet travels = p/2. There are p nodes that need to 
transmit m(p-1) words. Total traffic = m(p-1)*p/2*p. Number of link that support 
the load = p, to communication time ≥ twm(p-1)p/2.
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Total Exchange on a Mesh
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We use the procedure of the ring/array.
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Total Exchange on a Mesh
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We use the procedure of the ring/array.
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Total Exchange on a Mesh
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We use the procedure of the ring/array.
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Cost Analysis
Substitute p by √p (number of nodes per 
dimension).
Substitute message size m by m√p.
Cost is the same for each dimension.
T=(2ts+twmp)(√p-1)

We have p(√p-1)m words transferred, looks worse than lower bound in (p-1)m 
but no congestion. Notice that the time for data rearrangement is not taken into 
account. It is almost optimal (by a factor 4), see exercise.
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Total Exchange on a Hypercube
Generalize the mesh algorithm to logp
steps = number of dimensions, with 2 
nodes per dimension.
Same procedure as all-to-all broadcast.
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Total Exchange on a Hypercube
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Total Exchange on a Hypercube
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Total Exchange on a Hypercube
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Total Exchange on a Hypercube
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Cost Analysis
Number of steps: logp.
Size transmitted per step: pm/2.
Cost: T=(ts+twmp/2) logp.
Optimal?
Each node sends and receives m(p-1) words. 
Average distance = ( logp)/2. Total traffic = 
p*m(p-1)* logp/2.
Number of links = p logp/2.
Time lower bound = twm(p-1).

NO

Notes:
1. No congestion.
2. Bi-directional communication.
3. How to conclude if an algorithm is optimal or not: Check the possible 

lowest bound and see if the algorithm reaches it.
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An Optimal Algorithm
Have every pair of nodes communicate 
directly with each other – p-1 
communication steps – but without 
congestion.
At jth step node i communicates with node 
(i xor j) with E-cube routing.
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Total Exchange on a Hypercube
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Total Exchange on a Hypercube
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Total Exchange on a Hypercube
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Total Exchange on a Hypercube
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Total Exchange on a Hypercube
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Total Exchange on a Hypercube
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Etc…

Point: Transmit less, only to the needed node, and avoid congestion with E-
cube routing.
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Cost Analysis
Remark: Transmit less, only what is 
needed, but more steps.
Number of steps: p-1.
Transmission: size m per step.
Cost: T=(ts+twm)(p-1).
Compared withT=(ts+twmp/2) logp.
Previous algorithm better for small 
messages.

This algorithm is now optimal: It reaches the lowest bound.
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Circular Shift
It’s a particular permutation.
Circular q-shift: Node i sends data to node 
(i+q) mod p (in a set of p nodes).
Useful in some matrix operations and 
pattern matching.
Ring: intuitive algorithm in min{q,p-q}
neighbor to neighbor communication 
steps. Why?

A permutation = a redistribution in a set.
You can call the shift a rotation in fact.
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q mod √p on rows
compensate
⎣q / √p⎦ on colums

Circular 5-shift
on a mesh.
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Circular Shift on a Hypercube
Map a linear array with 2d nodes onto a 
hypercube of dimension d.
Expand q shift as a sum of powers of 2 
(e.g. 5-shift = 20+22).
Perform the decomposed shifts.
Use bi-directional links for “forward” (shift 
itself) and “backward” (rotation part)…
logp steps. 

Backward and forward my be misleading in the book.
Interesting but not best solution, no idea why it’s mentioned if the optimal 
solution is simpler.
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Or better:
Direct
E-cube routing.
q-shifts on a
8-node
hypercube.

Exercise: Check the E-cube routing and convince me that there is no 
congestion.
Communication time = ts+twm in one step.
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Improving Performance
So far messages of size m were not split.
If we split them into p parts:

One-to-all broadcast = scatter + all-to-all 
broadcast of messages of size m/p.
All-to-one reduction = all-to-all reduce + 
scatter of messages of size m/p.
All-reduce = all-to-all reduction + all-to-all 
broadcast of messages of size m/p.


