
1

Our Model-checker with MPI
Problems and Solutions

Alexandre David
B2-206

16-03-2007 Alexandre David, MVP'07 2

Problems
Design with message passing only.

No shared memory!

Detecting termination.
How do you know you’ve finished?
No shared memory!

Getting back the result.
How to get the trace?
Again, no shared memory!

16-03-2007 Alexandre David, MVP'07 3

Design
Load balance & minimize interactions.

state set

initialtest
goal

pop
state state compute

successors new state

waiting queue test if
visited allocator

push insert state

pop
state state compute

successors new state

test if
visited allocator

push insert state

pop
state state compute

successors

allocator

push state

waiting queuewaiting queue state setstate set

insert
test
goaltest

goal

new state

test if
visited

Every process runs everything in parallel with a
local queue and state-set.
Message passing in dispatching the states.



2

16-03-2007 Alexandre David, MVP'07 4

Design
Every state
belongs to a
process.
The (global aggregate) state-set is 
partitioned and distributed on the 
processes.
Partitioning done with the hash value.
Uniform hash distribution → load balance.

Principles of Message-Passing 
Programming
2 key attributes:

partitioned address space &
only explicit parallelization.

Logical view: p processes, each with its 
own exclusive address space.

Each piece of data must belong to a partition, 
i.e., explicit partitioned & placed.
All interactions require cooperation of two 
processes. Point to point communication.

Expensive but
costs are
explicit.

Minimize interactions.
Local accesses.

16-03-2007 Alexandre David, MVP'07 5

Refined Design
Non-blocking communication is desirable.

Can’t afford to block for every state sent.
Use a local buffer to store states and try to 
send them when possible.

Termination is a problem in itself, we need 
a protocol for that.
The same holds for getting the result in 
the end (and showing progress).

?

16-03-2007 Alexandre David, MVP'07 6

Issues
States may be generated many times by 
different processes but only one knows if 
they are visited or not!

Work-around: Cache.

Termination: Normally a simple token 
protocol would work but not here!

When a process goes idle, it can receive more 
work later.
First try: Dijkstra’s token algorithm (11.4.4).



3

16-03-2007 Alexandre David, MVP'07 7

Termination Detection:
The Model
A process is either active or inactive.
An inactive process may not send 
messages.
An active process may turn inactive.
An inactive process stays inactive unless it 
receives a message.

Find out when we can terminate.

16-03-2007 Alexandre David, MVP'07 8

What is the Problem?
A message can turn an inactive process 
active.

You don’t know if an inactive process will be 
turned active later…

Find out whether all processes are inactive 
and whether there are no more messages 
in the system.

And avoid races, like message sent not yet 
received…

16-03-2007 Alexandre David, MVP'07 9

Simple Token Algorithm

Processes arranged in a ring.

Process 1 inserts a token that will travel around back to 1.
The token leaves a process only if it’s inactive.
Process 1 determines when to terminate.

That does not work here:
• A process may become active after having sent the token.
• Who sent that message?
• Fix this: Dijkstra.



4

16-03-2007 Alexandre David, MVP'07 10

Dijkstra’s Token Termination 
Detection Algorithm - Idea
All processes are initially colored 
white.
A process i sending a message to 
process j with j < i is a suspect 
for reactivating a process ⇒ It 
turns black.
If a black process receives a 
token, it colors it black.

16-03-2007 Alexandre David, MVP'07 11

Dijkstra’s Token Termination 
Detection Algorithm

1) When P1 turns inactive, it turns white 
and sends a white token to P2.

2) If Pi sends a message to Pj and
j < i then Pi turns black.

3) If Pi has the token and is idle, it passes 
the token. The token becomes black if 
Pi is black.

4) After passing tokens, processes 
become white.

5) The algorithm terminates when P1
receives a white token and it is idle.

16-03-2007 Alexandre David, MVP'07 12

Cost
The token consumes O(P) in time.

P1 may become active again before getting 
back the token.
For a small number of processes, algorithm is 
acceptable.
For large numbers of processes, this becomes 
a significant overhead.
So far so good??



5

16-03-2007 Alexandre David, MVP'07 13

What Can Go Wrong
Will Go Wrong
What happens if Pi sends a message to Pj, j > i?

Pi may be white when it receives a white token later 
and forwards a white token. Token faster than the 
message - race.
Messages must be delivered in order for the protocol 
to work!

MPI guarantees that messages are non-
overtaking: M1 sent before M2 from the same
process will arrive before M2.

But no in-order guarantee!
Not good enough!

16-03-2007 Alexandre David, MVP'07 14

Dijkstra-Scholten Algorithm
1) Every process keeps a message count.

1) Increment the count for received messages.
2) Decrement the count for sent messages.

2) P1 is the initiator and sends a white token with a 
count=0.

3) If Pi sends or receive messages, it turns black.
4) If Pi receives the token,

1) it keeps it while it is active,
2) if it is black, the token becomes black,
3) when it is inactive, it forwards the token with its message 

count added and turns white.
5) If P1 is white, it receives a white token, and the 

message count+its count == 0, then P1 has detected 
termination.

16-03-2007 Alexandre David, MVP'07 15

Getting Back the Results
When P1 has detected termination, it can 
act as a master and

send a terminate message to everyone,
collect the results and print them,

Collecting the results could be done in parallel too!

send a shutdown message to everyone,
stop.


