
1

Programming Using the
Message-Passing Paradigm
(Chapter 6)

Alexandre David
B2-206

2

14+16-03-2007 Alexandre David, MVP'07 2

Topic Overview
Principles of Message-Passing
Programming
MPI: the Message Passing Interface
Topologies and Embedding
Overlapping Communication with
Computation
Collective Communication and
Computation Operations
Groups and Communicators

Put in practice some theory we have seen so far.

3

14+16-03-2007 Alexandre David, MVP'07 3

Why MPI?
One of the oldest libraries
(supercomputing 1992).
Wide-spread adoption, portable.
Minimal requirements on hardware.
Explicit parallelization.

Intellectually demanding.
High performance.
Scales to large number of processors.

?

Remember previous lectures: The minimal requirement is a bunch of
computers connected on a network.

4

14+16-03-2007 Alexandre David, MVP'07 4

MPI: The Message Passing
Interface
Standard library to develop portable
message-passing programs using either C
or Fortran.
The API defines the syntax and the
semantics of a core set of library routines.

Vendor implementations of MPI are available
on almost all commercial parallel computers.

It is possible to write fully-functional
message-passing programs by using only
the six routines.

In the early time of parallel computing every vendor had its incompatible
message-passing library with syntactic and semantic differences. Programs
were not portable (or required significant efforts to port them). MPI was
designed to solve this problem.

5

14+16-03-2007 Alexandre David, MVP'07 5

MPI Features
Communicator information (com. domain).
Point to point communication.
Collective communication.
Topology support.
Error handling.

send(const void *sendbuf, int nelem, int dest)
receive(void *recvbuf, int nelem, int src)

And you can map easily these practical concepts to theory we have been
studying. In summary send/receive are the most important primitives.

6

14+16-03-2007 Alexandre David, MVP'07 6

Six Golden MPI Functions
Total 125 functions.
6 most used function.

MPI_Init Initializes MPI.
MPI_Finalize Terminates MPI.
MPI_Comm_size Determines the number of processes.
MPI_Comm_rank Determines the label of the calling process.
MPI_Send Sends a message.
MPI_Recv Receives a message.

Let’s have some taste of MPI.

7

14+16-03-2007 Alexandre David, MVP'07 7

MPI Functions: Initialization
Must be called once by all processes.
MPI_SUCCESS (if successful).
#include <mpi.h>

int MPI_Init(int *argc, char ***argv)
int MPI_Finalize()

MPI_Init initializes the MPI environment. MPI_Finalize performs clean-up
tasks, no MPI calls after that (not even MPI_Init). As for MPI_Init,
MPI_Finalize must be called by all processes.
Arguments of MPI_Init: command line arguments. Arguments will be
processed and removed because the program is run within an environment
(mpirun) that is sending a bunch of special arguments to your program.
Exercise: You can try to print all the arguments of your program before
calling MPI_Init to see them if you want.

8

14+16-03-2007 Alexandre David, MVP'07 8

MPI Functions: Communicator
Concept of communication domain.
MPI_COMM_WORLD default for all
processes involved.
If there is a single process per processor,
MPI_Comm_size(MPI_COMM_WORLD, &size)
returns the number of processors.

int MPI_Comm_size(MPI_Comm comm, int *size)
int MPI_Comm_rank(MPI_Comm comm, int *rank)

Communication domain = set of processes allowed to communicate with each
other. Processes may belong to different communicators.
The rank is an int[0..comm_size-1]. Processes calling these functions must
belong to the appropriate communicator otherwise error!

9

14+16-03-2007 Alexandre David, MVP'07 9

Hello World!

#include <mpi.h>
int main(int argc, char *argv[])
{

int npes, myrank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
printf(“From process %d out of %d, Hello world!\n”,

myrank, npes);
MPI_Finalize();
return 0;

}

10

14+16-03-2007 Alexandre David, MVP'07 10

MPI Functions: Send, Recv
Wildcard for source: MPI_ANY_SOURCE.
int MPI_Send(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)
int MPI_Recv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

typedef struct MPI_Status {
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

};

The tag is used to distinguish different types of messages. Wildcard for tag:
MPI_ANY_TAG.
Receiver side: size of the buffer specified. Received message size ≤ size of
this buffer. If the received message is larger the function returns
MPI_ERR_TRUNCATE.
Status: MPI_SOURCE and MPI_TAG most useful when wildcards are used.
MPI_Recv is a blocking (buffered) receive operation. Different versions of
send are available but the buffer argument must always be safe for overriding
upon completion of the call. Programs should be safe in the sense that they
should not depend on a particular implementation of send.

11

14+16-03-2007 Alexandre David, MVP'07 11

Length of Received Message
Not directly accessible.
Reminder: The returned int says if the call
was successful or not.

int MPI_Get_count(MPI_Status *status,
MPI_Datatype datatype, int *count)

12

14+16-03-2007 Alexandre David, MVP'07 12

MPI Functions: Data Types
MPI_Datatype.
Correspondence MPI ↔ C data types.
MPI_BYTE and MPI_PACKED MPI specifics.
See table 6.2.

MPI_PACKED provides marshalling.

13

14+16-03-2007 Alexandre David, MVP'07 13

Principles of Message-Passing
Programming
2 key attributes:

partitioned address space &
only explicit parallelization.

Logical view: p processes, each with its
own exclusive address space.

Each piece of data must belong to a partition,
i.e., explicit partitioned & placed.
All interactions require cooperation of two
processes. Point to point communication.

Expensive but
costs are
explicit.

Minimize interactions.
Local accesses.

Partitioning: add complexity but encourages locality of access (critical for
performance as mentioned early in the course). Requirement on cooperation
for read-only or read/write access adds complexity too but the programmer is
fully aware of all the costs and will think about algorithms that minimize
interaction costs.
Explicit parallelization: the programmer has to think more but result is more
scalable.

14

14+16-03-2007 Alexandre David, MVP'07 14

MPI Programming Structure
Asynchronous.

Hard to reason about.
Non-deterministic.

Loosely synchronous.
Synchronize to perform interactions.
Asynchronous in-between.
Easier to reason about.

Single Program Multiple Data.

Asynchronous paradigm: All concurrent tasks execute asynchronously. Good
compromise is to synchronize sometimes.
Most MPI programs are written following the SPMD programming model, i.e.,
the same code is executed on all the processors (with some exceptions like
the “root” process).

15

14+16-03-2007 Alexandre David, MVP'07 15

Send/Recv Example

Expected: what P1 receives is the value of
‘a’ when it was sent.
But depending on the implementation…
Design carefully the protocol.

P0 P1
a=100; receive(&a, 1, 0);
send(&a, 1, 1); printf(“%d\n”,a);
a=0;

What you see may not be what you get!

16

14+16-03-2007 Alexandre David, MVP'07 16

Blocking Non-Buffered
Communication

Simple method is to block & return only when it is safe.
Major issues: idling and deadlock.
How to improve: Buffered blocking = copy data and returns when the copy
is completed. Reduce idling but copy overhead. Buffer the data at the
receiver’s side too.

17

14+16-03-2007 Alexandre David, MVP'07 17

What Happens There?

P0 P1
send(&a, 1, 1); send(&a, 1, 0);
recv(&b, 1, 1); recv(&b, 1, 0);

Simple exchange of ‘a’?

?

If blocking non-buffered communication is used, we have a deadlock. We
need to break cyclic waits but a simple fix here can become cumbersome and
buggy in a larger program.

18

14+16-03-2007 Alexandre David, MVP'07 18

Blocking Buffered
Communication

With special hardware.

With special hardware support or without. How to implement a protocol
buffering only at the sender’s side? Receiver interrupts senders and initiates
the transfer when it is ready to receive.

19

14+16-03-2007 Alexandre David, MVP'07 19

Examples

P0 P1
for(i = 0;i < 1000; i++) { for(i = 0; i < 1000; i++) {

produce_data(&a); receive(&a, 1, 0);
send(&a, 1, 1); consume_data(&a);

} }

P0 P1
receive(&a, 1, 1); receive(&a, 1, 0);
send(&b, 1, 1); send(&b, 1, 0);

OK?

Deadlock

Almost OK, it depends on the execution speed of the receiver. Buffers are
bounded and can get filled up easily in this case.

20

14+16-03-2007 Alexandre David, MVP'07 20

Non-Blocking Non-Buffered
Communication

Blocking: Pay semantic correctness in idling (non-buffered) or buffer
management (buffered). Here semantic correctness ensured by programmer
because the functions (send & receive) return before it is safe to do so. Non-
blocking often accompanied by a check-status operation.
Note: This is similar to calls to asynchronous I/O operations.
The idling time when the process is waiting for the I/O operation can be used
for computation (instead of idling) if the data is not modified (hence possible
buffered communication). This may require some program restructuring. Non-
blocking communication is further enhanced by dedicated communication
hardware, such as special network cards with controllers that have direct
memory access (DMA).

21

14+16-03-2007 Alexandre David, MVP'07 21

Unsafe Program
int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {

MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);

}
else if (myrank == 1) {

MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);

}

Match the order in which the
send and the receive operations
are issued.

Programmer’s responsibility.

Different behaviors depending on the implementation of send (with or without
buffering, with or without sufficient space). May lead to a deadlock.

22

14+16-03-2007 Alexandre David, MVP'07 22

Circular Dependency – Unsafe
Program

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,
MPI_COMM_WORLD);

MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
MPI_COMM_WORLD);

?

Send messages in a ring. Deadlock if send is blocking.

23

14+16-03-2007 Alexandre David, MVP'07 23

Circular Send – Safe Program
int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank%2 == 1) {

MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,
MPI_COMM_WORLD);

MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
MPI_COMM_WORLD);

} else {
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,

MPI_COMM_WORLD);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,

MPI_COMM_WORLD);
}

Solution similar to the classical dining philosophers problem. Processes are
partitioned into two groups: odd and even. Common communication pattern
so there is a send & receive function.

24

14+16-03-2007 Alexandre David, MVP'07 24

Sending and Receiving
Messages Simultaneously
No circular deadlock problem.

int MPI_Sendrecv(void *sendbuf,
int sendcount, MPI_Datatype senddatatype, int dest, int sendtag,
void *recvbuf,
int recvcount,MPI_Datatype recvdatatype, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

int MPI_Sendrecv_replace(void *buf,
int count, MPI_Datatype datatype, int dest, int sendtag,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

Or with replace:

Exchange of messages. For replace there are constraints on the transferred
data type.

25

14+16-03-2007 Alexandre David, MVP'07 25

Topologies and Embedding
MPI allows a programmer to organize processors
into logical k-D meshes.
The processor IDs in MPI_COMM_WORLD can be
mapped to other communicators (corresponding
to higher-dimensional meshes) in many ways.
The goodness of any such mapping is
determined by the interaction pattern of the
underlying program and the topology of the
machine.
MPI does not provide the programmer any
control over these mappings… but it finds good
mapping automatically.

Mechanism to assign rank to processes does not use any information about
the interconnection network, making it impossible to perform topology
embeddings in an intelligent manner. Even we had that information, we would
have to specify different mappings for different interconnection networks. We
want our programs to be portable, so let MPI do the job for us, since we
know now what is happening underneath.

26

14+16-03-2007 Alexandre David, MVP'07 26

Topologies and Embeddings

Row-major
mapping.

Column-major
mapping.

Space-filling curve
mapping.

Hypercube
mapping.

Recognize Gray code?

27

14+16-03-2007 Alexandre David, MVP'07 27

Creating and Using Cartesian
Topologies
Create a new communicator.
All processes in comm_old must call this.
Embed a virtual topology onto the parallel
architecture.

int MPI_Cart_create(MPI_Comm comm_old,
int ndims, int *dims, int *periods, int reorder,
MPI_Comm *comm_cart)

? More processes before/after?

Multi-dimensional grid topologies.
Arguments:
•ndims: number of dimensions.
•dims[i]: size for every dimension.
•periods[i]: if dim ‘i’ has wrap-around or not.
•reorder: allows to reorder the ranks if that leads to a better embedding.
Notes: For some processes comm_cart may become MPI_COMM_NULL if
they are not part of the topology (more processes in comm_old than in the
described topology). If the number of processes in the topology is greater
than the number of available processes, we have an error.
We can identify processes by a vector = its coordinates in the topology.

28

14+16-03-2007 Alexandre David, MVP'07 28

Rank-Coordinates Conversion
Dimensions must match.
Shift processes on the topology.

int MPI_Cart_coord(MPI_Comm comm_cart,
int rank, int maxdims, int *coords)

int MPI_Cart_rank(MPI_Comm comm_cart,
int *coords, int *rank)

int MPI_Cart_shift(MPI_Comm comm_cart,
int dir, int s_step, int *rank_source, int *rank_dest)

29

14+16-03-2007 Alexandre David, MVP'07 29

Overlapping Communication
with Computation
Transmit messages without interrupting
the CPU.
Recall how blocking send/receive
operations work.
Sometimes desirable to have non-blocking.

30

14+16-03-2007 Alexandre David, MVP'07 30

Overlapping Communication
with Computation
Functions return before the operations are
completed.

int MPI_Isend(void *buf,
int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_Irecv(void *buf,
int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Request *request)

!
Allocate a request
object.
MPI_Request
is in fact a
reference (pointer)
to it.
Leaks…

Later we need to make sure that the operations are completed so the
additional ‘request’ argument provides a handler on the operation for later
test.

31

14+16-03-2007 Alexandre David, MVP'07 31

Testing Completion
Sender: before overriding the data.
Receiver: before reading the data.
Test or wait completion.
De-allocate request handler.

int MPI_Test(MPI_Request *request,
int *flag, MPI_Status *status)

int MPI_Wait(MPI_Request *request,
MPI_Status *status)

De-allocation if the blocking operation has finished. It’s OK to send with
non-blocking and receive with blocking.

32

14+16-03-2007 Alexandre David, MVP'07 32

Previous Example: Safe
Program
int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {

MPI_Isend(a, 10, MPI_INT, 1, 1, …);
MPI_Isend(b, 10, MPI_INT, 1, 2, …);

}
else if (myrank == 1) {

MPI_Irecv(b, 10, MPI_INT, 0, 2, …);
MPI_Irecv(a, 10, MPI_INT, 0, 1, …);

}

One unblocking call is enough
since it can be matched by a
blocking call.

Avoid deadlock. Most of the time, this is at the expense of increased memory
usage.

33

14+16-03-2007 Alexandre David, MVP'07 33

Collective Operation – Later
One-to-all broadcast – MPI_Bcast.
All-to-one reduction – MPI_Reduce.
All-to-all broadcast – MPI_Allgather.
All-to-all reduction – MPI_Reduce_scatter.
All-reduce and prefix sum – MPI_Allreduce.
Scatter – MPI_Scatter.
Gather – MPI_Gather.
All-to-all personalized – MPI_Alltoall.

You should know what these operations do.

34

14+16-03-2007 Alexandre David, MVP'07 34

Collective Communication and
Computation Operations
Common collective operations supported.

Over a group or processes corresponding to a
communicator.
All processes in the communicator must call
these functions.

These operations act like a virtual
synchronization step.

Parallel programs should be written such that they behave correctly even if a
global synchronization is performed before and after the collective call.

35

14+16-03-2007 Alexandre David, MVP'07 35

Barrier
Communicator: Group of processes that
are synchronized.
The function returns after all processes in
the group have called the function.

int MPI_Barrier(MPI_Comm comm)

36

14+16-03-2007 Alexandre David, MVP'07 36

Barrier

37

14+16-03-2007 Alexandre David, MVP'07 37

One-to-All Broadcast
All the processes must call this function,
even the receivers.

int MPI_Bcast(void *buf,
int count, MPI_Datatype datatype,
int source, MPI_Comm comm)

P0

P1

P2

P3

P1

P2

P3

P0
Broadcast

Reduce

38

14+16-03-2007 Alexandre David, MVP'07 38

All-to-One Reduction
Combine elements in sendbuf (of each process
in the group) using the operation op and return
in recvbuf of target.
See table 6.3 for the list of predefined operations
that are supported.

int MPI_Reduce(void *sendbuf, void *recvbuf,
int count,MPI_Datatype datatype,
MPI_Op op, int target,
MPI_Comm comm)

?

Constraint on the count of items of type datatype. All the processes call this
function even those that are not the target and they all provide a recvbuf.
When count > 1, the operation is applied element-wise. Why do they all
need a recvbuf?

39

14+16-03-2007 Alexandre David, MVP'07 39

Special Operations
MPI_MAXLOC and MPI_MINLOC work on
pairs (vi, li).

Compare with vi, use li to break ties, and
return (l,v).
Additional MPI data-pair types defined.

Value for comparison = key.

Payload.

See table 6.4 for the different pair data types.

40

14+16-03-2007 Alexandre David, MVP'07 40

Example

Value 15 17 11 12 17 11

Process 0 1 2 3 4 5

MinLoc?

MaxLoc?

41

14+16-03-2007 Alexandre David, MVP'07 41

All-Reduce
No target argument since all processes
receive the result.

int MPI_Allreduce(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

P0

P1

P2

P3

P1

P2

P3

P0

All-reduce

42

14+16-03-2007 Alexandre David, MVP'07 42

Prefix-Operations
Not only sums.
Process j has prefix sj as expected.

int MPI_Scan(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

a

b

c

d

P0

P1

P2

P3

P1

P2

P3

P0

Prefix-Scan

a

ab

abc

abcd

43

14+16-03-2007 Alexandre David, MVP'07 43

Scatter and Gather

P0

P1

P2

P3

P1

P2

P3

P0Scatter

Gather

44

14+16-03-2007 Alexandre David, MVP'07 44

All-Gather
Variant of gather.

P0

P1

P2

P3

P1

P2

P3

P0

All-Gather

45

14+16-03-2007 Alexandre David, MVP'07 45

All-to-All Personalized

P0

P1

P2

P3

P1

P2

P3

P0
All-to-All

Personalized

46

14+16-03-2007 Alexandre David, MVP'07 46

Example Matrix*Vector
(Program 6.4)

Partition on rows.

Allgather (All-to-all broadcast)

Multiply

47

14+16-03-2007 Alexandre David, MVP'07 47

Groups and Communicators
How to partition a group of processes into
sub-groups?
Group by color (different communicators).
Sort by key (new ranks in the sub-groups).

int MPI_Comm_split(MPI_Comm comm,
int color, int key,
MPI_Comm *newcomm)

Sometimes parallel algorithms need a restricted communication to certain
subsets of processes.

48

14+16-03-2007 Alexandre David, MVP'07 48

Split Example

P0: MPI_Comm_split(oldc, 0, 1, ...) P0
P1: MPI_Comm_split(oldc, 0, 1, ...) P1
P2: MPI_Comm_split(oldc, 0, 1, ...) P2
P3: MPI_Comm_split(oldc, 1, 1, ...) P0
P4: MPI_Comm_split(oldc, 1, 1, ...) P1
P5: MPI_Comm_split(oldc, 1, 1, ...) P2
P6: MPI_Comm_split(oldc, 1, 1, ...) P3
P7: MPI_Comm_split(oldc, 2, 1, ...) P0

co
lo

r
ke

y

ne
w

 g
ro

up
s

49

14+16-03-2007 Alexandre David, MVP'07 49

Splitting Cartesian Topologies
Split Cartesian topology into lower
dimensional grids.

int MPI_Cart_sub(MPI_Comm comm_cart,
int *keep_dims, MPI_Comm *comm_subcart)

Original group.

New group.Tell which dimensions to keep, e.g,
2x4x7 and {1,0,1} → 4* sub (2x7)

The keep_dims (boolean) array tells which dimensions to keep for the new
sub-group partitioning. The coordinate will match, e.g., (1,2,3) in the original
will give (1,3) and will be in the 2nd sub-group.

50

14+16-03-2007 Alexandre David, MVP'07 50

Example

4

2

7
original 2x4x7

(1,0,1) -> 4* (2x7)

2

7

(0,0,1) -> 2*4* (7)

7

51

14+16-03-2007 Alexandre David, MVP'07 51

Example Matrix*Vector
(Program 6.8)

Partition.

Row sub-topology.
Colum sub-topology.

Distribute vector.

Local multiplication.

Sum reduce on rows.

52

14+16-03-2007 Alexandre David, MVP'07 52

Performance Evaluation
Elapsed time.

double t1, t2;
t1=MPI_Wtime();
…
t2=MPI_Wtime();
printf(“Elapsed time is %f sec\n”, t2-t1);

53

14+16-03-2007 Alexandre David, MVP'07 53

Howto
Compile a hello.c MPI program:

mpicc –Wall –O2 –o hello hello.c
Start Lam:

lamboot
Run:

mpirun –np 4 ./hello
Clean-up before logging off:

wipe

54

14+16-03-2007 Alexandre David, MVP'07 54

In Practice
Write a configure file hosts with

homer.cs.aau.dk cpu=4
marge.cs.aau.dk cpu=4
bart.cs.aau.dk cpu=4
lisa.cs.aau.dk cpu=4

Start/stop lam:
export LAMRSH=‘ssh -x’
lamboot/wipe –b hosts

Run MPI:
mpirun –np 8 <path>/hello

Which computers
to use. They all
have the same MPI
installation.

There are different implementations of MPI. LAM/MPI is a bit old, OpenMPI is
more recent. Depending on the vendor you can have something else.

