
1

Programming Shared Address
Space Platforms (Chapter 7)

Alexandre David
B2-206

This is about pthreads.

2

28-02-2007+02-03-2007 Alexandre David, MVP'07 2

Today
Thread Basics (7.1 – 7.4).
Synchronization Primitives in Pthreads
(7.5).
Hints.

3

28-02-2007+02-03-2007 Alexandre David, MVP'07 3

Comparison
Directive based: OpenMP.
Explicit parallel programming:

pthreads – shared memory – focus on
synchronization,
MPI – message passing – focus on
communication.
Both: Specify tasks & interactions.

Programming paradigms for shared address space machines focus on
constructs for expressing concurrency and synchronization. Communication in
shared memory programming is implicitly specified. We focus on minimizing
data-sharing overheads (for MPI it’s communication overheads).

4

28-02-2007+02-03-2007 Alexandre David, MVP'07 4

Programming Models
Concurrency supported by:

Processes – private data unless otherwise
specified.
Threads – shared memory, lightweight.
Directive based programming – concurrency
specified as high level compiler directive,
OpenMP.

See OS course.

5

28-02-2007+02-03-2007 Alexandre David, MVP'07 5

Threads Basics
All memory is globally accessible.
But the stack is considered local.

In practice both local (private) and global
(shared) memory.
Recall that memory is physically distributed
and local accesses are faster.
Applicable to SMP/multi-core machines.

6

28-02-2007+02-03-2007 Alexandre David, MVP'07 6

Why Threads?
Software portability – applications
developed and run without modification on
multi-processor machines.
Latency hiding – recall chapter 2.
Implicit scheduling and load balancing –
specify many tasks and let the system map
and schedule them.
Ease of programming, widespread.

?

7

28-02-2007+02-03-2007 Alexandre David, MVP'07 7

The POSIX Thread API
It is a standard API (like MPI).

Supported by most vendors.

General concepts applicable to other
thread APIs (java threads, NT threads,
etc).
Low level functions, API is missing high
level constructs, e.g., no collective
communication like in MPI.

8

28-02-2007+02-03-2007 Alexandre David, MVP'07 8

Thread Creation

#include <pthread.h>

int pthread_create(
pthread_t *thread_handle,
const pthread_attr_t *attribute,
void* (*thread_function)(void *),
void *arg);

Header.

Identifier.

NULL for
default.

Function to call with its argument.

Invokes thread_function as a thread.
Notes:
•The identifier thread_handle is written before the function returns.
•The function returns in the main thread, the function thread_function runs in
parallel in another thread.
•On uni-processor machines the thread may preempt its creator thread.
•There is a returned result (success or not).
•Beware of race conditions: Make sure to initialize everything before creating
the thread (and not after).

9

28-02-2007+02-03-2007 Alexandre David, MVP'07 9

Waiting for Termination

int pthread_join(
pthread_t thread,
void ** ptr);

Thread to wait for.

Threads call pthread_exit(void*).
The caller can read a (void*) at address ptr.

The creator process/thread calls this function
to wait for its spawned threads.

And returns success (0) or an error code.

10

28-02-2007+02-03-2007 Alexandre David, MVP'07 10

Thread Creation & Termination
#include <pthread.h>
int pthread_create(

pthread_t *thread_handle,
const pthread_attr_t *attribute,
void* (*thread_function)(void *),
void *arg);

int pthread_join(
pthread_t thread,
void ** ptr);

void pthread_exit(void *);
Questions?

11

28-02-2007+02-03-2007 Alexandre David, MVP'07 11

Example: Compute PI
#include <pthread.h>
...
main() {

…
pthread_t p_threads[MAX_THREADS];
pthread_attr_t attr;
pthread_attr_init (&attr);
for (i=0; i< num_threads; i++) {

hits[i] = i;
pthread_create(&p_threads[i], &attr, compute_pi,

(void *) &hits[i]);
}
for (i=0; i< num_threads; i++) {

pthread_join(p_threads[i], NULL);
total_hits += hits[i];

}

This is a lousy computation of pi. Based on area ratios. Take a square 1x1 and
put a circle inside. Square area = 1, circle area = πr2 = π/4 (r = ½). Choose
many points randomly and the ratio hits/total will converge towards π/4.

12

28-02-2007+02-03-2007 Alexandre David, MVP'07 12

Example: Compute PI
void *compute_pi (void *s) {

int seed, i;
double rand_no_x, rand_no_y;
int *hit_pointer = (int *) s;
seed = *hit_pointer;
int local_hits = 0;
for (i = 0; i < sample_points_per_thread; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
local_hits ++;

seed *= i;
}
*hit_pointer = local_hits;
pthread_exit(0);

}

To return the result.
Used to pass seed.

Count hits
in the circle.

Return result.

Call to rand_r, worse than drand48 or rand, because we need a reentrant
function.

13

28-02-2007+02-03-2007 Alexandre David, MVP'07 13

Performance if
• change to global count,
• execute on 4 processor machine.

This shows false sharing (chapter 2).

?

Speedup of 3.91, efficiency = 0.98. Note: The threads do not synchronize with
each other.

14

28-02-2007+02-03-2007 Alexandre David, MVP'07 14

Race Condition
Need to synchronize if a shared variable is
updated concurrently.

if (my_cost < best_cost) best_cost = my_cost;
Race condition.
Can give wrong (inconsistent) result.
We want this to be atomic – but we can’t so
this is a critical segment: Must be executed by
only one thread at a time.

Race condition: The result depends on the order of the different statements in
parallel, i.e., the interleaving. Inconsistent result: It does not correspond to any
serialization of the threads (considering the test-and-update atomic).

15

28-02-2007+02-03-2007 Alexandre David, MVP'07 15

Mutex-Locks
Implement critical section.
Mutex-locks can be locked or unlocked.

Locking is atomic.
Threads must acquire a lock to enter a critical
section.
Threads must release their locks when leaving
a critical section.

Locks represent serialization points. Too
many locks will decrease performance.

In the book “critical segment” but usually called “critical section”. The call to
“lock-a-thread” is blocking and returns only when the lock is acquired. Of
course all locks must initialized to unlocked when starting programs.
Be also careful on the granularity of what you lock. Locking big portions of
code is bad since you are killing parallelism for the code you are locking.

16

28-02-2007+02-03-2007 Alexandre David, MVP'07 16

Mutex-Lock

int pthread_mutex_init(
pthread_mutex_t *mutex_lock,
const pthread_mutextattr_t *lock_attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex_lock);

int pthread_mutex_unlock(
pthread_mutex_t *mutex_lock);

17

28-02-2007+02-03-2007 Alexandre David, MVP'07 17

Example Revisited
pthread_mutex_t minimum_value_lock;
...
main() {

...
pthread_mutex_init(&minimum_value_lock, NULL);

....
}
void *find_min(void *list_ptr) {

...
pthread_mutex_lock(&minimum_value_lock);
if (my_min < minimum_value) minimum_value = my_min;
pthread_mutex_unlock(&minimum_value_lock);
…

}

Careful with the use of mutex locks. Don’t use one mutex lock for all your locks
if they are independent. Use one different lock for different kinds of code
segments that are not mutually exclusive – it may still be the case that you
have 2 portions of code accessing the same data, in which case you need to
use the same lock.

18

28-02-2007+02-03-2007 Alexandre David, MVP'07 18

Producer-Consumer Example
Shared buffer containing one task.

No overwrite until cleared.
No read until written.
Pick one task at a time.

Note: Better with semaphores in this case.

19

28-02-2007+02-03-2007 Alexandre David, MVP'07 19

Example

pthread_mutex_t task_queue_lock;
int task_available;
...
main() {

...
task_available = 0;
pthread_mutex_init(&task_queue_lock, NULL);
...

}

20

28-02-2007+02-03-2007 Alexandre David, MVP'07 20

Example (cont.)
void *producer(void *producer_thread_data) {

...
while (!done()) {

inserted = 0;
create_task(&my_task);
while (inserted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 0) {

insert_into_queue(my_task);
task_available = 1;
inserted = 1;

}
pthread_mutex_unlock(&task_queue_lock); }}}

lo
ca

l

critical section

Why is this a bad example?

21

28-02-2007+02-03-2007 Alexandre David, MVP'07 21

Example (cont.)
void *consumer(void *consumer_thread_data) {

…
while (!done()) {

extracted = 0;
while (extracted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 1) {

extract_from_queue(&my_task);
task_available = 0;
extracted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
process_task(my_task);

}
}

Do it better with semaphores.

22

28-02-2007+02-03-2007 Alexandre David, MVP'07 22

Producer-Consumers with
Semaphores – Recall

Semaphore M

Semaphore S

Shared
data

Producer
do

…
P(S)
write(&data)
V(M)

loop

Consumer
do

…
P(M);
if hasData(&data)
read(&data)
V(M)

else
V(S)

loop

23

28-02-2007+02-03-2007 Alexandre David, MVP'07 23

Overhead of Locking
Locks represent serialization points.

Keep critical sections small.
Previous example: create & process tasks
outside the section.

Faster variant:

int pthread_mutex_trylock(
pthread_mutex_t *mutex_lock);

Does not block, returns EBUSY if failed.

This variant is faster because there is no management of waiting queues and
waking up threads that are blocked.

24

28-02-2007+02-03-2007 Alexandre David, MVP'07 24

Example

void *find_entries(void *start_pointer) {
/* This is the thread function */
struct database_record *next_record;
int count;
current_pointer = start_pointer;
do {

next_record = find_next_entry(current_pointer);
count = output_record(next_record);

} while (count < requested_number_of_records);
}

Find k matches in a list. The example is not fully correct.

25

28-02-2007+02-03-2007 Alexandre David, MVP'07 25

Example (cont.)

int output_record(struct database_record *record_ptr) {
int count;
pthread_mutex_lock(&output_count_lock);
output_count ++;
count = output_count;
pthread_mutex_unlock(&output_count_lock);
if (count <= requested_number_of_records) {

print_record(record_ptr);
}
return (count);

}

Looks ok but if the times of the previous loop and this section are comparable
then we have a terrible overhead.

26

28-02-2007+02-03-2007 Alexandre David, MVP'07 26

Reducing Locking Overhead
int output_record(struct database_record *record_ptr) {

int count;
int lock_status = pthread_mutex_trylock(&output_count_lock);
if (lock_status == EBUSY) {

insert_into_local_list(record_ptr);
return(0);

} else {
count = output_count;
output_count += number_on_local_list + 1;
pthread_mutex_unlock(&output_count_lock);
print_records(record_ptr, local_list,

requested_number_of_records - count);
return(count + number_on_local_list + 1);

}
}

Example is not completely correct in fact (more entries searched than asked).
Better performance because the locking call is much faster and the number of
locked operations is reduced.
Very important: The lock must be released, and only when it was acquired.

27

28-02-2007+02-03-2007 Alexandre David, MVP'07 27

Try-lock
To reduce idling overheads.
Good if critical section can be delayed.
Cheaper call.

Although it is polling.

28

28-02-2007+02-03-2007 Alexandre David, MVP'07 28

Condition Variables for
Synchronization
How to implement condition variables with
monitors.
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
A condition variable is always associated
with a mutex.
Lock/unlock to test & wait, re-lock/unlock
to re-test.
Similar concept of monitors in Java,
though implemented differently.

One condition variable ⇔ one predicate.

Associate one condition to one predicate only.

29

28-02-2007+02-03-2007 Alexandre David, MVP'07 29

Condition Variables & Monitors

Monitor

Condition variable

enter & test

success

failure

signaled – re-enter & test

pthread_cond_wait

pthread_cond_signal

pthread_mutex_lock

pthread_mutex_unlock

In java:
synchronized void foo() {

if (!condition) wait();
…
notify();

}

30

28-02-2007+02-03-2007 Alexandre David, MVP'07 30

Monitors with Pthread

pthread_mutex_lock(&lock);
while(!condition) {

pthread_cond_wait(&predicate, &lock);
}
<critical section>
pthread_cond_signal(&predicate);
pthread_mutex_unlock(&lock);

Why do we have a loop on the condition variable?

31

28-02-2007+02-03-2007 Alexandre David, MVP'07 31

Monitors in Java

synchronized void foo() {
while(!condition) wait();
<critical section>
notify();

}

32

28-02-2007+02-03-2007 Alexandre David, MVP'07 32

Monitors in C#

using System.Threading;
…
void foo() {

Monitor.enter(obj);
while(!condition) Monitor.wait(obj);
<critical section>
Monitor.pulse(obj);
Monitor.exit(obj);

}

33

28-02-2007+02-03-2007 Alexandre David, MVP'07 33

Calls

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

There is variant pthread_cond_timedwait for a wait with time-out.

34

28-02-2007+02-03-2007 Alexandre David, MVP'07 34

Example: Producer-Consumer
pthread_cond_t cond_queue_empty, cond_queue_full;
pthread_mutex_t task_queue_cond_lock;
int task_available;
…
main() {

…
task_available = 0;
pthread_init();
pthread_cond_init(&cond_queue_empty, NULL);
pthread_cond_init(&cond_queue_full, NULL);
pthread_mutex_init(&task_queue_cond_lock, NULL);
… /* create and join producer and consumer threads */

}

The example is overkill and is here only for pedagogical purposes.

35

28-02-2007+02-03-2007 Alexandre David, MVP'07 35

Example: Producer-Consumer
void *producer(void *producer_thread_data) {

int inserted;
while (!done()) {

create_task();
pthread_mutex_lock(&task_queue_cond_lock);
while (!(task_available == 0)) {

pthread_cond_wait(&cond_queue_empty,
&task_queue_cond_lock);

}
insert_into_queue();
task_available = 1;
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&task_queue_cond_lock); } }

task_available == 0 ⇔ cond_queue_empty
task_available == 1 ⇔ cond_queue_full

36

28-02-2007+02-03-2007 Alexandre David, MVP'07 36

Example: Producer-Consumer
void *consumer(void *consumer_thread_data) {

while (!done()) {
pthread_mutex_lock(&task_queue_cond_lock);
while (!(task_available == 1)) {

pthread_cond_wait(&cond_queue_full,
&task_queue_cond_lock);

}
my_task = extract_from_queue();
task_available = 0;
pthread_cond_signal(&cond_queue_empty);
pthread_mutex_unlock(&task_queue_cond_lock);
process_task(my_task);

} }

task_available == 0 ⇔ cond_queue_empty
task_available == 1 ⇔ cond_queue_full

37

28-02-2007+02-03-2007 Alexandre David, MVP'07 37

Attribute Objects
To control threads and synchronization.

Change scheduling policy…
Specify mutex types.

Types of mutexes:
Normal – 1 lock per thread or deadlock.
Recursive – several locks per thread OK.
Error check – 1 lock per thread or error.

38

28-02-2007+02-03-2007 Alexandre David, MVP'07 38

Thread Cancellation
Stop a thread in the middle of its work.
Function may return before the thread is
really stopped!

int pthread_cancel(pthread_t thread);

39

28-02-2007+02-03-2007 Alexandre David, MVP'07 39

Composite Synchronization
Constructs
Pthread API offers (low-level) basic
functions.
Higher level constructs built with basic
functions.

Read-write locks.
Barriers.
… well in fact these two are part of the API.

40

28-02-2007+02-03-2007 Alexandre David, MVP'07 40

Read-Write Locks
Read often/write sometimes.

Multiple reads/unique write.
Priority of writers over readers.

Use condition variables.
Count readers and writers.
readers_proceed
⇔ pending_writers == 0 && writer == 0.
writer_proceed
⇔ writer == 0 && readers == 0.

41

28-02-2007+02-03-2007 Alexandre David, MVP'07 41

Read-Write Lock - RLocking

void mylib_rwlock_rlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l -> read_write_lock));
while ((l -> pending_writers > 0) || (l -> writer > 0)) {

pthread_cond_wait(&(l -> readers_proceed),
&(l -> read_write_lock));

}
l -> readers ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

Notice that there is no signal here.

42

28-02-2007+02-03-2007 Alexandre David, MVP'07 42

Read-Write Lock - WLocking

void mylib_rwlock_wlock(mylib_rwlock_t *l) {
pthread_mutex_lock(&(l -> read_write_lock));
while ((l -> writer > 0) || (l -> readers > 0)) {

l -> pending_writers ++;
pthread_cond_wait(&(l -> writer_proceed),

&(l -> read_write_lock));
l -> pending_writers --;

}
l -> writer ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

typo in the book

There is a mistake in the book for the while loop. Either you move the l-
>pending_writers-- inside the while loop, which is logical w.r.t. “pending”
writers, or you move the l->pending_writers++ outside the loop. Keeping it
inside is utterly incorrect.

43

28-02-2007+02-03-2007 Alexandre David, MVP'07 43

Read-Write Lock - Unlocking
void mylib_rwlock_unlock(mylib_rwlock_t *l) {

pthread_mutex_lock(&(l -> read_write_lock));
if (l -> writer > 0) {

l -> writer = 0;
} else if (l -> readers > 0) {

l -> readers --;
}
if ((l -> readers == 0) && (l -> pending_writers > 0)) {

pthread_cond_signal(&(l -> writer_proceed));
} else if (l -> readers > 0) {

pthread_cond_broadcast(&(l -> readers_proceed));
}
pthread_mutex_unlock(&(l -> read_write_lock)); }

bug?

44

28-02-2007+02-03-2007 Alexandre David, MVP'07 44

Another Bug
Example 7.7 has a bug.
Test & update is not atomic as you can
see.
Fix: Re-test after the write lock has been
obtained.
BTW: The read-lock is useless here.
What you should do: Acquire a write lock,
test and update.

?

45

28-02-2007+02-03-2007 Alexandre David, MVP'07 45

Barriers
Encoded with

a counter,
a mutex, and
a condition variable.

Idea:
Count & block threads.
Signal them all.

46

28-02-2007+02-03-2007 Alexandre David, MVP'07 46

Barriers

void mylib_barrier(mylib_barrier_t *b, int num_threads) {
pthread_mutex_lock(&(b -> count_lock));
b -> count ++;
if (b -> count == num_threads) { /* last thread */

b -> count = 0;
pthread_cond_broadcast(&(b -> ok_to_proceed));

} else {
pthread_cond_wait(&(b -> ok_to_proceed),

&(b -> count_lock));
}
pthread_mutex_unlock(&(b -> count_lock));

}

Performance bottleneck: The mutex serializes all the threads, execution time is
O(n). Possible to improve by grouping threads by pairs.

47

28-02-2007+02-03-2007 Alexandre David, MVP'07 47

O (n)

Smaller constant
because less
contention.

?

48

28-02-2007+02-03-2007 Alexandre David, MVP'07 48

Avoiding Incorrect Code
Avoid relying on thread inertia.

Threads are asynchronous.
Initialize data before starting threads.
Never assume that a thread will wait for you.

Never bet on thread race.
Assume that at any point, any thread may go
to sleep for any period of time.
No ordering exists between threads unless you
cause ordering.

49

28-02-2007+02-03-2007 Alexandre David, MVP'07 49

Avoiding Incorrect Code
Scheduling is not the same as
synchronization.

Never use sleep to synchronize.
Never try to “tune” with timing.

Beware of deadlocks & priority inversion.
One predicate ⇔ one condition variable.

50

28-02-2007+02-03-2007 Alexandre David, MVP'07 50

Avoiding Performance Problems
Beware of concurrent serialization.
Use the right number of mutexes.

Too much mutex contention or too much
locking without contention?

Avoid false sharing.

And… don’t forget to compile like this:
gcc –Wall –o hello hello.c -lpthread

