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Standard RAM Model
Standard Random Access Machine:

Each operation
load, store, jump, add, etc …
takes one unit of time.

Simple, generally one model.

The RAM is the basic machine model behind sequential algorithms.
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Multi-processor Machines

Numerous architectures
→ different models.
Differences in communication

Synchronous/asynchronous
Differences in computations

Synchronous (parallel)/asynchronous 
(distributed)

Differences in memory layout
NUMA/UMA

Even if there are different architectures and models, the goal is to abstract
from the hardware and have a model on which to reason and analyze 
algorithms. Synchronous vs. asynchronous communication is like blocking
vs. non-blocking communication. NUMA is assumed most often when the 
model talks about local memory to a given processor.
Clusters of computers correspond to NUMA in practice. They are best 
suited for message passing type of communication.
Shared memory systems are easier from a programming model point of 
view but are more expensive.
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PRAM Model

A PRAM consists of
a global access memory (i.e. shared)
a set of processors running the same 
program (though not always), with a 
private stack.

A PRAM is synchronous.
One global clock.

Unlimited resources.

PRAM model – Parallel Random Access Machine.
In the report the stack is called accumulator.
Synchronous PRAM means that all processors follow a global clock (ideal 
model!). There is no direct or explicit communication between processors 
(such as message passing). Two processors communicate if one reads
what another writes.
Unlimited resources means we are not limited by the size of the memory 
and the number of processors varies in function of the size of the problem, 
i.e., we have access to as many processors as we want. Designing
algorithms for many processors is very fruitful in practice even with very few 
processors in practice whereas the opposite is limiting.



6

21-02-2007 Alexandre David, MVP'07 6

Classes of PRAM

How to resolve contention?
EREW PRAM – exclusive read, exclusive write
CREW PRAM – concurrent read, exclusive 
write
ERCW PRAM – exclusive read, concurrent 
write
CRCW PRAM – concurrent read, concurrent 
write

?

The most powerful model is of course CRCW where everything is allowed 
but that’s the most unrealistic in practice too. The weakest model is EREW 
where concurrency is limited, closer to real architectures although still 
infeasible in practice (need m*p switches to connect p processors to m
memory cells and provide exclusive access).
Exclusive read/write means access is serialized.
Main protocol to resolve contention (writing is the problem):
•Common: concurrent write allowed if the values are identical.
•Arbitrary: only an arbitrary processes succeeds.
•Priority: processes are ordered.
•Sum: the result is the sum of the values to be stored.
Exclusive write is exclusive with reads too.
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Example: Sequential Max

Function smax(A,n)
m := -∞
for i := 1 to n do

m := max{m,A[i]}
od
smax := m

end

Time O(n)

Sequential dependency,
difficult to parallelize.

Simple algorithm description, independent from a given language. See your 
previous course on algorithms. O-notation used, check your previous course 
on algorithms too.
Highly sequential, difficult to parallelize.
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Example: Sequential Max (bis)
Function smax2(A,n)

for i := 1 to n/2 do
B[i] := max{A[2i-1],A[2i]}

od
if n = 2 then

smax2 := B[1]
else

smax2 := smax2(B,n/2)
fi

end

Time O(n)

Dependency only between every call.

Remarks:
•Additional memory needed in this description
•B[i] compresses the array A[1..n] to B[1..n/2] with every element being the 
max of two elements from A (all elements are taken).
•The test serves to stop the recursive call – termination!
This is an example of the compress and iterate paradigm which leads to 
natural parallelizations. Here the computations in the for loop are 
independent and the recursive call tree gives the dependency between 
tasks to perform.
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Example: Parallel Max

Function smax2(A,n) [p1,p2,…,pn/2]
for i := 1 to n/2 pardo

pi: B[i] := max{A[2i-1],A[2i]}
od
if n = 2 then

p1: smax2 := B[1]
else

smax2 := smax2(B,n/2) [p1,p2,…,pn/4]
fi

end

Time O(logn)

EREW-PRAM ?

?

EREW-PRAM algorithm.. Why? There is actually no contention and the 
dependencies are resolved by the recursive calls (when they return).
Here we give in brackets the processors used to solve the current problem.
Time t(n) to execute the algorithms satisfies t(n)=O(1) for n=2 and 
t(n)=t(n/2)+O(1) for n>2. Why?
Think parallel and PRAM (all operations synchronized, same speed, pi: 
operation in parallel). The loop is done in constant time on n/2 processors in 
parallel.
How many calls? How to solve t(n)=f(n)?
Answer: see your course on algorithms. Here simple recursion tree logn
calls with constant time: t(n)=O(logn). Note: log base 2. You are expected 
to know a minimum about log.
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Analysis of the Parallel Max
Time: O( logn) for n/2 processors.
Work done?

p(n)=n/2 number of processors.
t(n) time to run the algorithm.
w(n)=p(n)*t(n) work done.
Here w(n)=O(n logn).
Is it optimal?

Work done corresponds to the actual amount of computation done (not 
exactly though). In general when we parallelize algorithms, the total amount 
of computations is greater than the original, but by a constant if we want to 
be optimal.
The work measures the time required to run the parallel algorithm on one 
processor that would simulate all the others.



11

21-02-2007 Alexandre David, MVP'07 11

Optimality

If w(n) is of the same order as
the time for the best known
sequential algorithm, then the
parallel algorithm is said to be
optimal.

Definition

What about our previous example?
It’s not optimal. Why? Well, we use only n/2,n/4,…,2,1 processors, not n all 
the time!
We do not want to waste time like that right?
Another way to see it is that you get a speed-up linear to the number of 
processors (though at a constant factor, which means sub-linear).
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Analysis of the Parallel Max
Time: O( logn) for n/2 processors.
Work done?

p(n)=n/2 number of processors.
t(n) time to run the algorithm.
w(n)=p(n)*t(n) work done.
Here w(n)=O(n logn).
Is it optimal? NO, O(n) to be optimal.
Why??
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Design Principle

Construct optimal algorithms
to run as fast as possible.

=
Construct optimal algorithms
using as many processors as
possible!

Because optimal with p → optimal with fewer than p.
Opposite false.
Simulation does not add work.

Note that if we have an optimal parallel algorithm running in time t(n) using 
p(n) processors then there exist optimal algorithms using p’(n)<p(n)
processors running in time O(t(n)*p(n)/p’(n)). That means that you can use 
fewer processors to simulate an optimal algorithm that is using many 
processors! The goal is to maximize utilization of our processors. 
Simulating does not add work with respect to the parallel algorithm.
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Brent’s Scheduling Principle

If a parallel computation consists of
k phases
taking time t1,t2,…,tk
using a1,a2,…,ak processors
in phases 1,2,…,k

then the computation can be done in time
O(a/p+t) using p processors where
t =sum(ti), a =sum(aiti).

Theorem

What it means: same time as the original plus an overhead. If the number of 
processors increases then we decrease the overhead. The overhead
corresponds to simulating the ai with p. What it really means: It is possible 
to make algorithms optimal with the right amount of processors (provided 
that t*p has the same order of magnitude of tsequential). That gives you a 
bound on the number of needed processors.
It’s a scheduling principle to reduce the number of physical processors 
needed by the algorithm and increase utilization. It does not do miracles.
Proof: i’th phase, p processors simulate ai processors. Each of them 
simulate at most ceil(ai/p)≤ai/p+1, which consumes time ti at a constant 
factor for each of them.
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Previous Example
k phases = logn.
ti = constant time.
ai = n/2,n/4,…,1 processors.
With p processors we can use time
O( logn+n/p).
Choose p=O(n/ logn) → time O( logn) and 
this is optimal!

There is a “but”: You need to know n in
advance to schedule the computation.

Note: n is a power of 2 to simplify. Recall the definition of optimality to 
conclude that it is optimal indeed. This does not gives us an implementation, 
but almost.
Typo p6 “using O(n/ logn) processors”. Divide and conquer same as 
compress and iterate for the exercise.
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Prefix Computations

Input: array A[1..n] of numbers.
Output: array B[1..n] such that B[k] = sum(i:1..k) A[i]
Sequential algorithm:
function prefix+(A,n)

B[1] := A[1]
for i = 2 to n do

B[i] := B[i-1]+A[i]
od

end

Time O(n)
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Parallel Prefix Computation
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end

Correctness: When the recursive call of prefix+ returns then 
D[k]=sum(i:1..2k) A[i] (for 1 ≤ k ≤ n/2). That comes from the compression 
algorithm idea.
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Parallel Prefix Computation
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end

Correctness: When the recursive call of prefix+ returns then 
D[k]=sum(i:1..2k) A[i] (for 1 ≤ k ≤ n/2). That comes from the compression 
algorithm idea.
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Prefix Computations
The point of this algorithm:

It works because + is associative (i.e. the 
compression works).
It will work for any other associative 
operations.
Brent’s scheduling principle:

For any associative operator computable in O(1),
its prefix is computable in O( logn) using O(n/ logn)
processors, which is optimal!

On a EREW-PRAM of course.
In particular initializing an array to a constant value…



20

21-02-2007 Alexandre David, MVP'07 20

Merging (of Sorted Arrays)

Rank function:
rank(x,A,n) = 0 if x < A[1]
rank(x,A,n) = max{i | A[i] ≤ x}
Computable in time O( logn) by binary 
search.

Merge A[1..n] and B[1..m] into 
C[1..n+m].
Sequential algorithm in time O(n+m).
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Parallel Merge
function merge1(A,B,n,m)[p1,…,pn+m]

for i = 1 to n pardo pi:
IA[i] := rank(A[i]-1,B,m)
C[i+IA[i]] := A[i]

od
for i = 1 to m pardo pi:

IB[i] := rank(B[i],A,n)
C[i+IB[i]] := B[i]

od
merge1 := C

end
CREW
Not optimal.

?

On CRCW-PRAM.
Compute indices for A[i] and compute indices for B[i] in parallel. Indices 
found by computing the rank of the elements. Dominating factor is the rank 
so this runs in O( log(n+m)). Not optimal, you see why?
However we could use processors pi+n for the 2nd loop (and we would have 
to rewrite this so that we have all processors doing something), which is not 
suggested by the report but it does not change much (we still have 
(n+m)*log(n+m)).
The more complicated version proposed in the report is optimal, which 
means it’s possible to merge arrays optimally.
Being more careful here we see that it’s actually CREW-PRAM. If it is 
CRCW then it would write fewer elements than n+m and it would be wrong.
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Simulating CRCW on EREW
Assumption on addressed memory p(n)c

for some constant c.
Simulation algorithm idea:

Sort accesses.
Give priority to 1st.
Broadcast result for contentious accesses.

Conclusion: Optimality can be kept with 
EREW-PRAM when simulating a CRCW 
algorithm.

Read the details in the report. Remember the idea and the result. 
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Static vs. Dynamic Networks

Interconnection networks built using links and switches. How to connect:
•Static networks, or direct networks, have p2p static communication links.
•Dynamic networks, or indirect networks, have switches to route the 
communication.
Number of (output) ports on a switch = degree. Mapping input -> output 
implemented by different technologies.

Static networks to connect processors <-> processors, dynamic networks to 
connect processors <-> memory.
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Bus Based Networks

No local cache

Local cache

Good:
•Cost scales linearly with the number of nodes.
•The distance between all the nodes is constant.
•It is ideal for broadcasting.
Bad:
•Shared bandwidth between all the nodes -> bottleneck in performance.
In practice bus based only for small SMP (Intel). Caches are only a trick to 
reduce bandwidth consumption on the bus (not to reduce bandwidth as 
stated in the book).

Both for processors & memory.
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Crossbar Networks

Grid to connect p processors to b memory banks. Non blocking in the sense 
that a connection (routing) does not block the connection of any other 
processing node, in contrast to multistage networks.
Good: scalable in performance (non blocking).
Bad: number of switches = p*b, not scalable in cost.
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Multistage Networks

Intermediate network, between crossbar and bus.
Again p processing nodes and b memory banks.
A common type is the omega network:
•It has logp stages (with matching number of inputs and outputs).
•It has a perfect shuffle interconnection pattern, easy with left rotate.
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Switches in Omega Networks

Configurations: pass-through and cross-over.

p/2 * log p switching nodes:
log p stages, p/2 inputs & outputs.
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Omega Network
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Blocking in Omega Networks

Contention in the access, one is blocked. Such networks are called blocking
networks.

So far processor <-> memory.
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Processors <-> Processors 
Networks

Performant, very expensive. Bottleneck, cheaper.

Number of edges: n(n-1)/2 vs. n-1.
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Linear Arrays and Meshes

Wrap around changes the number of neighbors and distance for some 
nodes.
Linear array: each node has 2 neighbors (except start & end). It becomes a 
ring (or 1-D torus) with wraparound.
2-D mesh has p processors so the dimension is given by sqrt(p). Every 
node (except on the border) has 4 neighbors. Attractive from a wiring point 
of view. Adding wraparound links gives a 2-D torus.
3-D, similarly. Every time we add a dimension, we add 2 neighbors. 3-D 
meshes good for physical simulations because they correspond to the 
modeled problem and the way processing is distributed.
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Hypercubes

Hypercubes are the other extreme of linear meshes. 2 nodes per dimension 
and log p dimensions. Remember p processing nodes. Number of nodes for 
hypercube topology = 2dimension = p.
Very important: the clever way to distribute the indices. Remember this, it’s 
useful to derive parallel algorithms running on hypercubes.
Property: minimum distance between two nodes = number of different bits in 
the two indices (how many dimensions we need to cross).
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Tree Based Networks

(a) Some nodes share their connections for other nodes.
Routing for sending a message: Go up in the tree until it reaches a sub-tree 

that contains the destination, then go down. Performance in function of 
the height of the tree O( log p).

Issue with communication: Nodes (or switches) up in the tree may be 
bottlenecks w.r.t. bandwidth. Fat trees: alternative to give more 
bandwidth to shared routes.
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Fat Trees

More bandwidth where we need it.
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Evaluating The Networks
All the previous topologies have 
advantages and disadvantages.
Important factors: cost and performance.
Define criteria to characterize cost and 
performance.

Your turn: Give suggestions on measure criteria.
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Criteria
Diameter: maximum distance pa ↔ pb.
Connectivity.
Bisection width.
Bisection bandwidth.
Cost.

Distance = shortest path between 2 nodes.
Diameter: How far 2 nodes may be.
•Completely connected: 1.
•Star connected: 2.
•Ring: floor(p/2).
•2-D mesh without wraparound: 2(dim-1). With wraparound: 2*floor(dim/2). 
Note: dim = sqrt(p).
•Hypercube: dim (=log p).
•Complete binary tree: height=h, p=2h+1-1, h =log((p+1)/2 ), travel 2h.
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Criteria
Diameter.
Connectivity: measure of multiplicity of 
paths.
Bisection width.
Bisection bandwidth.
Cost.

High connectivity to lower contention and avoid congested networks.
With or without wraparound gives different results (consider min). Interesting 
to remember: Connectivity is d for d-dimensional hypercubes.
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Criteria
Diameter.
Connectivity.
Bisection width: minimum number of links 
to cut in order to partition the network in 2 
equal halves.
Bisection bandwidth: minimum volume of 
communication allowed between 2 halves.
Cost.

Bisection width measures the weakness/strength of the network, overall 
connectivity. 
•Ring: 2.
•2-D mesh without wraparound: dim (=sqrt(p)); with wraparound: 2*dim.
•Completely connected network: needs to cut half of the edges = p2/2.
•Hypercubes: how we construct… double nodes every time, so cut p/2 
nodes.

Number of bits per link = channel bandwidth = channel rate (peak bit rate) * 
channel width (number of wires).
Bisection bandwidth also called cross-section bandwidth.
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Criteria
Diameter.
Connectivity.
Bisection width.
Bisection bandwidth.
Cost: number of communication links, i.e., 
wires.

Number of wires:
•Linear arrays and trees: p-1.
•D-dimensional mesh: D*p.
•Hypercube: p*dim/2 (with dim = log p). Connectivity is dim.
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Comparing The Topologies
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Cache Coherence Protocols

We need additional hardware to keep 
multiple copies of the same memory 
bank consistent with each other.
We have seen that $$ is good but it 
does not come for free.
Mechanism known as cache coherence 
protocol, usually described as state 
machines.
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2 principles: invalidate other copies or update other copies. 1st is cheap in 
terms of bandwidth.
Another factor that you don’t see here: false sharing. Imagine y next to x 
on the same cache line. You will invalidate y as well. Degraded performance 
if different processors update different parts of the cache line: the cache line 
becomes shared although the variables are not.
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One example, may define other types of machines with more states. 4 
common.
UPPAAL demo.
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Implementations of Cache 
Coherence Protocols

Different ways to implement the protocol 
described by the state machine.

Snoopy cache: good on busses.
Snoopy hardware that monitors states.
Directory based systems: states and 
presence bits for cache lines.
Distributed directory: physically distribute 
directory with memory.

Snoopy is popular.
Directory based is expensive.
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