
1

The PRAM Model
Physical Organization of
Parallel Platforms

Alexandre David
B2-206

2

21-02-2007 Alexandre David, MVP'07 2

Today
Introduction to Parallel Algorithms
(Sven Skyum)

PRAM model
Optimality
Examples

Physical Organization of Parallel Platforms
(2.4)

3

21-02-2007 Alexandre David, MVP'07 3

Standard RAM Model
Standard Random Access Machine:

Each operation
load, store, jump, add, etc …
takes one unit of time.

Simple, generally one model.

The RAM is the basic machine model behind sequential algorithms.

4

21-02-2007 Alexandre David, MVP'07 4

Multi-processor Machines

Numerous architectures
→ different models.
Differences in communication

Synchronous/asynchronous
Differences in computations

Synchronous (parallel)/asynchronous
(distributed)

Differences in memory layout
NUMA/UMA

Even if there are different architectures and models, the goal is to abstract
from the hardware and have a model on which to reason and analyze
algorithms. Synchronous vs. asynchronous communication is like blocking
vs. non-blocking communication. NUMA is assumed most often when the
model talks about local memory to a given processor.
Clusters of computers correspond to NUMA in practice. They are best
suited for message passing type of communication.
Shared memory systems are easier from a programming model point of
view but are more expensive.

5

21-02-2007 Alexandre David, MVP'07 5

PRAM Model

A PRAM consists of
a global access memory (i.e. shared)
a set of processors running the same
program (though not always), with a
private stack.

A PRAM is synchronous.
One global clock.

Unlimited resources.

PRAM model – Parallel Random Access Machine.
In the report the stack is called accumulator.
Synchronous PRAM means that all processors follow a global clock (ideal
model!). There is no direct or explicit communication between processors
(such as message passing). Two processors communicate if one reads
what another writes.
Unlimited resources means we are not limited by the size of the memory
and the number of processors varies in function of the size of the problem,
i.e., we have access to as many processors as we want. Designing
algorithms for many processors is very fruitful in practice even with very few
processors in practice whereas the opposite is limiting.

6

21-02-2007 Alexandre David, MVP'07 6

Classes of PRAM

How to resolve contention?
EREW PRAM – exclusive read, exclusive write
CREW PRAM – concurrent read, exclusive
write
ERCW PRAM – exclusive read, concurrent
write
CRCW PRAM – concurrent read, concurrent
write

?

The most powerful model is of course CRCW where everything is allowed
but that’s the most unrealistic in practice too. The weakest model is EREW
where concurrency is limited, closer to real architectures although still
infeasible in practice (need m*p switches to connect p processors to m
memory cells and provide exclusive access).
Exclusive read/write means access is serialized.
Main protocol to resolve contention (writing is the problem):
•Common: concurrent write allowed if the values are identical.
•Arbitrary: only an arbitrary processes succeeds.
•Priority: processes are ordered.
•Sum: the result is the sum of the values to be stored.
Exclusive write is exclusive with reads too.

7

21-02-2007 Alexandre David, MVP'07 7

Example: Sequential Max

Function smax(A,n)
m := -∞
for i := 1 to n do

m := max{m,A[i]}
od
smax := m

end

Time O(n)

Sequential dependency,
difficult to parallelize.

Simple algorithm description, independent from a given language. See your
previous course on algorithms. O-notation used, check your previous course
on algorithms too.
Highly sequential, difficult to parallelize.

8

21-02-2007 Alexandre David, MVP'07 8

Example: Sequential Max (bis)
Function smax2(A,n)

for i := 1 to n/2 do
B[i] := max{A[2i-1],A[2i]}

od
if n = 2 then

smax2 := B[1]
else

smax2 := smax2(B,n/2)
fi

end

Time O(n)

Dependency only between every call.

Remarks:
•Additional memory needed in this description
•B[i] compresses the array A[1..n] to B[1..n/2] with every element being the
max of two elements from A (all elements are taken).
•The test serves to stop the recursive call – termination!
This is an example of the compress and iterate paradigm which leads to
natural parallelizations. Here the computations in the for loop are
independent and the recursive call tree gives the dependency between
tasks to perform.

9

21-02-2007 Alexandre David, MVP'07 9

Example: Parallel Max

Function smax2(A,n) [p1,p2,…,pn/2]
for i := 1 to n/2 pardo

pi: B[i] := max{A[2i-1],A[2i]}
od
if n = 2 then

p1: smax2 := B[1]
else

smax2 := smax2(B,n/2) [p1,p2,…,pn/4]
fi

end

Time O(logn)

EREW-PRAM ?

?

EREW-PRAM algorithm.. Why? There is actually no contention and the
dependencies are resolved by the recursive calls (when they return).
Here we give in brackets the processors used to solve the current problem.
Time t(n) to execute the algorithms satisfies t(n)=O(1) for n=2 and
t(n)=t(n/2)+O(1) for n>2. Why?
Think parallel and PRAM (all operations synchronized, same speed, pi:
operation in parallel). The loop is done in constant time on n/2 processors in
parallel.
How many calls? How to solve t(n)=f(n)?
Answer: see your course on algorithms. Here simple recursion tree logn
calls with constant time: t(n)=O(logn). Note: log base 2. You are expected
to know a minimum about log.

10

21-02-2007 Alexandre David, MVP'07 10

Analysis of the Parallel Max
Time: O(logn) for n/2 processors.
Work done?

p(n)=n/2 number of processors.
t(n) time to run the algorithm.
w(n)=p(n)*t(n) work done.
Here w(n)=O(n logn).
Is it optimal?

Work done corresponds to the actual amount of computation done (not
exactly though). In general when we parallelize algorithms, the total amount
of computations is greater than the original, but by a constant if we want to
be optimal.
The work measures the time required to run the parallel algorithm on one
processor that would simulate all the others.

11

21-02-2007 Alexandre David, MVP'07 11

Optimality

If w(n) is of the same order as
the time for the best known
sequential algorithm, then the
parallel algorithm is said to be
optimal.

Definition

What about our previous example?
It’s not optimal. Why? Well, we use only n/2,n/4,…,2,1 processors, not n all
the time!
We do not want to waste time like that right?
Another way to see it is that you get a speed-up linear to the number of
processors (though at a constant factor, which means sub-linear).

12

21-02-2007 Alexandre David, MVP'07 12

Analysis of the Parallel Max
Time: O(logn) for n/2 processors.
Work done?

p(n)=n/2 number of processors.
t(n) time to run the algorithm.
w(n)=p(n)*t(n) work done.
Here w(n)=O(n logn).
Is it optimal? NO, O(n) to be optimal.
Why??

13

21-02-2007 Alexandre David, MVP'07 13

Design Principle

Construct optimal algorithms
to run as fast as possible.

=
Construct optimal algorithms
using as many processors as
possible!

Because optimal with p → optimal with fewer than p.
Opposite false.
Simulation does not add work.

Note that if we have an optimal parallel algorithm running in time t(n) using
p(n) processors then there exist optimal algorithms using p’(n)<p(n)
processors running in time O(t(n)*p(n)/p’(n)). That means that you can use
fewer processors to simulate an optimal algorithm that is using many
processors! The goal is to maximize utilization of our processors.
Simulating does not add work with respect to the parallel algorithm.

14

21-02-2007 Alexandre David, MVP'07 14

Brent’s Scheduling Principle

If a parallel computation consists of
k phases
taking time t1,t2,…,tk
using a1,a2,…,ak processors
in phases 1,2,…,k

then the computation can be done in time
O(a/p+t) using p processors where
t =sum(ti), a =sum(aiti).

Theorem

What it means: same time as the original plus an overhead. If the number of
processors increases then we decrease the overhead. The overhead
corresponds to simulating the ai with p. What it really means: It is possible
to make algorithms optimal with the right amount of processors (provided
that t*p has the same order of magnitude of tsequential). That gives you a
bound on the number of needed processors.
It’s a scheduling principle to reduce the number of physical processors
needed by the algorithm and increase utilization. It does not do miracles.
Proof: i’th phase, p processors simulate ai processors. Each of them
simulate at most ceil(ai/p)≤ai/p+1, which consumes time ti at a constant
factor for each of them.

15

21-02-2007 Alexandre David, MVP'07 15

Previous Example
k phases = logn.
ti = constant time.
ai = n/2,n/4,…,1 processors.
With p processors we can use time
O(logn+n/p).
Choose p=O(n/ logn) → time O(logn) and
this is optimal!

There is a “but”: You need to know n in
advance to schedule the computation.

Note: n is a power of 2 to simplify. Recall the definition of optimality to
conclude that it is optimal indeed. This does not gives us an implementation,
but almost.
Typo p6 “using O(n/ logn) processors”. Divide and conquer same as
compress and iterate for the exercise.

16

21-02-2007 Alexandre David, MVP'07 16

Prefix Computations

Input: array A[1..n] of numbers.
Output: array B[1..n] such that B[k] = sum(i:1..k) A[i]
Sequential algorithm:
function prefix+(A,n)

B[1] := A[1]
for i = 2 to n do

B[i] := B[i-1]+A[i]
od

end

Time O(n)

17

21-02-2007 Alexandre David, MVP'07 17

Parallel Prefix Computation
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end

Correctness: When the recursive call of prefix+ returns then
D[k]=sum(i:1..2k) A[i] (for 1 ≤ k ≤ n/2). That comes from the compression
algorithm idea.

18

21-02-2007 Alexandre David, MVP'07 18

Parallel Prefix Computation
function prefix+(A,n)[p1,…,pn]

p1: B[1] := A[1]
if n > 1 then

for i = 1 to n/2 pardo
pi: C[i]:=A[2i-1]+A[2i]

od
D:=prefix+(C,n/2)[p1,…,pn/2]
for i = 1 to n/2 pardo

pi: B[2i]:=D[i]
od
for i = 2 to n/2 pardo

pi: B[2i-1]:=D[i-1]+A[2i-1]
od

fi
prefix+:=B

end

Correctness: When the recursive call of prefix+ returns then
D[k]=sum(i:1..2k) A[i] (for 1 ≤ k ≤ n/2). That comes from the compression
algorithm idea.

19

21-02-2007 Alexandre David, MVP'07 19

Prefix Computations
The point of this algorithm:

It works because + is associative (i.e. the
compression works).
It will work for any other associative
operations.
Brent’s scheduling principle:

For any associative operator computable in O(1),
its prefix is computable in O(logn) using O(n/ logn)
processors, which is optimal!

On a EREW-PRAM of course.
In particular initializing an array to a constant value…

20

21-02-2007 Alexandre David, MVP'07 20

Merging (of Sorted Arrays)

Rank function:
rank(x,A,n) = 0 if x < A[1]
rank(x,A,n) = max{i | A[i] ≤ x}
Computable in time O(logn) by binary
search.

Merge A[1..n] and B[1..m] into
C[1..n+m].
Sequential algorithm in time O(n+m).

21

21-02-2007 Alexandre David, MVP'07 21

Parallel Merge
function merge1(A,B,n,m)[p1,…,pn+m]

for i = 1 to n pardo pi:
IA[i] := rank(A[i]-1,B,m)
C[i+IA[i]] := A[i]

od
for i = 1 to m pardo pi:

IB[i] := rank(B[i],A,n)
C[i+IB[i]] := B[i]

od
merge1 := C

end
CREW
Not optimal.

?

On CRCW-PRAM.
Compute indices for A[i] and compute indices for B[i] in parallel. Indices
found by computing the rank of the elements. Dominating factor is the rank
so this runs in O(log(n+m)). Not optimal, you see why?
However we could use processors pi+n for the 2nd loop (and we would have
to rewrite this so that we have all processors doing something), which is not
suggested by the report but it does not change much (we still have
(n+m)*log(n+m)).
The more complicated version proposed in the report is optimal, which
means it’s possible to merge arrays optimally.
Being more careful here we see that it’s actually CREW-PRAM. If it is
CRCW then it would write fewer elements than n+m and it would be wrong.

22

21-02-2007 Alexandre David, MVP'07 22

Simulating CRCW on EREW
Assumption on addressed memory p(n)c

for some constant c.
Simulation algorithm idea:

Sort accesses.
Give priority to 1st.
Broadcast result for contentious accesses.

Conclusion: Optimality can be kept with
EREW-PRAM when simulating a CRCW
algorithm.

Read the details in the report. Remember the idea and the result.

23

Physical Organization of
Parallel Platforms

24

21-02-2007 Alexandre David, MVP'07 24

Static vs. Dynamic Networks

Interconnection networks built using links and switches. How to connect:
•Static networks, or direct networks, have p2p static communication links.
•Dynamic networks, or indirect networks, have switches to route the
communication.
Number of (output) ports on a switch = degree. Mapping input -> output
implemented by different technologies.

Static networks to connect processors <-> processors, dynamic networks to
connect processors <-> memory.

25

21-02-2007 Alexandre David, MVP'07 25

Bus Based Networks

No local cache

Local cache

Good:
•Cost scales linearly with the number of nodes.
•The distance between all the nodes is constant.
•It is ideal for broadcasting.
Bad:
•Shared bandwidth between all the nodes -> bottleneck in performance.
In practice bus based only for small SMP (Intel). Caches are only a trick to
reduce bandwidth consumption on the bus (not to reduce bandwidth as
stated in the book).

Both for processors & memory.

26

21-02-2007 Alexandre David, MVP'07 26

Crossbar Networks

Grid to connect p processors to b memory banks. Non blocking in the sense
that a connection (routing) does not block the connection of any other
processing node, in contrast to multistage networks.
Good: scalable in performance (non blocking).
Bad: number of switches = p*b, not scalable in cost.

27

21-02-2007 Alexandre David, MVP'07 27

Multistage Networks

Intermediate network, between crossbar and bus.
Again p processing nodes and b memory banks.
A common type is the omega network:
•It has logp stages (with matching number of inputs and outputs).
•It has a perfect shuffle interconnection pattern, easy with left rotate.

28

21-02-2007 Alexandre David, MVP'07 28

Switches in Omega Networks

Configurations: pass-through and cross-over.

p/2 * log p switching nodes:
log p stages, p/2 inputs & outputs.

29

21-02-2007 Alexandre David, MVP'07 29

Omega Network

30

21-02-2007 Alexandre David, MVP'07 30

Blocking in Omega Networks

Contention in the access, one is blocked. Such networks are called blocking
networks.

So far processor <-> memory.

31

21-02-2007 Alexandre David, MVP'07 31

Processors <-> Processors
Networks

Performant, very expensive. Bottleneck, cheaper.

Number of edges: n(n-1)/2 vs. n-1.

32

21-02-2007 Alexandre David, MVP'07 32

Linear Arrays and Meshes

Wrap around changes the number of neighbors and distance for some
nodes.
Linear array: each node has 2 neighbors (except start & end). It becomes a
ring (or 1-D torus) with wraparound.
2-D mesh has p processors so the dimension is given by sqrt(p). Every
node (except on the border) has 4 neighbors. Attractive from a wiring point
of view. Adding wraparound links gives a 2-D torus.
3-D, similarly. Every time we add a dimension, we add 2 neighbors. 3-D
meshes good for physical simulations because they correspond to the
modeled problem and the way processing is distributed.

33

21-02-2007 Alexandre David, MVP'07 33

Hypercubes

Hypercubes are the other extreme of linear meshes. 2 nodes per dimension
and log p dimensions. Remember p processing nodes. Number of nodes for
hypercube topology = 2dimension = p.
Very important: the clever way to distribute the indices. Remember this, it’s
useful to derive parallel algorithms running on hypercubes.
Property: minimum distance between two nodes = number of different bits in
the two indices (how many dimensions we need to cross).

34

21-02-2007 Alexandre David, MVP'07 34

Tree Based Networks

(a) Some nodes share their connections for other nodes.
Routing for sending a message: Go up in the tree until it reaches a sub-tree

that contains the destination, then go down. Performance in function of
the height of the tree O(log p).

Issue with communication: Nodes (or switches) up in the tree may be
bottlenecks w.r.t. bandwidth. Fat trees: alternative to give more
bandwidth to shared routes.

35

21-02-2007 Alexandre David, MVP'07 35

Fat Trees

More bandwidth where we need it.

36

21-02-2007 Alexandre David, MVP'07 36

Evaluating The Networks
All the previous topologies have
advantages and disadvantages.
Important factors: cost and performance.
Define criteria to characterize cost and
performance.

Your turn: Give suggestions on measure criteria.

37

21-02-2007 Alexandre David, MVP'07 37

Criteria
Diameter: maximum distance pa ↔ pb.
Connectivity.
Bisection width.
Bisection bandwidth.
Cost.

Distance = shortest path between 2 nodes.
Diameter: How far 2 nodes may be.
•Completely connected: 1.
•Star connected: 2.
•Ring: floor(p/2).
•2-D mesh without wraparound: 2(dim-1). With wraparound: 2*floor(dim/2).
Note: dim = sqrt(p).
•Hypercube: dim (=log p).
•Complete binary tree: height=h, p=2h+1-1, h =log((p+1)/2), travel 2h.

38

21-02-2007 Alexandre David, MVP'07 38

39

21-02-2007 Alexandre David, MVP'07 39

40

21-02-2007 Alexandre David, MVP'07 40

41

21-02-2007 Alexandre David, MVP'07 41

42

21-02-2007 Alexandre David, MVP'07 42

Criteria
Diameter.
Connectivity: measure of multiplicity of
paths.
Bisection width.
Bisection bandwidth.
Cost.

High connectivity to lower contention and avoid congested networks.
With or without wraparound gives different results (consider min). Interesting
to remember: Connectivity is d for d-dimensional hypercubes.

43

21-02-2007 Alexandre David, MVP'07 43

Criteria
Diameter.
Connectivity.
Bisection width: minimum number of links
to cut in order to partition the network in 2
equal halves.
Bisection bandwidth: minimum volume of
communication allowed between 2 halves.
Cost.

Bisection width measures the weakness/strength of the network, overall
connectivity.
•Ring: 2.
•2-D mesh without wraparound: dim (=sqrt(p)); with wraparound: 2*dim.
•Completely connected network: needs to cut half of the edges = p2/2.
•Hypercubes: how we construct… double nodes every time, so cut p/2
nodes.

Number of bits per link = channel bandwidth = channel rate (peak bit rate) *
channel width (number of wires).
Bisection bandwidth also called cross-section bandwidth.

44

21-02-2007 Alexandre David, MVP'07 44

45

21-02-2007 Alexandre David, MVP'07 45

Criteria
Diameter.
Connectivity.
Bisection width.
Bisection bandwidth.
Cost: number of communication links, i.e.,
wires.

Number of wires:
•Linear arrays and trees: p-1.
•D-dimensional mesh: D*p.
•Hypercube: p*dim/2 (with dim = log p). Connectivity is dim.

46

21-02-2007 Alexandre David, MVP'07 46

Comparing The Topologies

47

21-02-2007 Alexandre David, MVP'07 47

Cache Coherence Protocols

We need additional hardware to keep
multiple copies of the same memory
bank consistent with each other.
We have seen that $$ is good but it
does not come for free.
Mechanism known as cache coherence
protocol, usually described as state
machines.

48

21-02-2007 Alexandre David, MVP'07 48

2 principles: invalidate other copies or update other copies. 1st is cheap in
terms of bandwidth.
Another factor that you don’t see here: false sharing. Imagine y next to x
on the same cache line. You will invalidate y as well. Degraded performance
if different processors update different parts of the cache line: the cache line
becomes shared although the variables are not.

49

21-02-2007 Alexandre David, MVP'07 49

One example, may define other types of machines with more states. 4
common.
UPPAAL demo.

50

21-02-2007 Alexandre David, MVP'07 50

Implementations of Cache
Coherence Protocols

Different ways to implement the protocol
described by the state machine.

Snoopy cache: good on busses.
Snoopy hardware that monitors states.
Directory based systems: states and
presence bits for cache lines.
Distributed directory: physically distribute
directory with memory.

Snoopy is popular.
Directory based is expensive.

51

21-02-2007 Alexandre David, MVP'07 51

52

21-02-2007 Alexandre David, MVP'07 52

