
Introduction to the Case-
Study: A Model-Checker

Alexandre David
B2-206

Real stuff!



14-11-06 AA1 2

Classification of Problems
Computation is known

can divide statically
load balancing “easy”
dependency problems
off-line setup.

Ex:
matrix-multiplication
linear equation solver

Computation is not
known in advance

dynamic distribution
load balancing is an 
issue
dependencies make it 
more spicy

Ex:
search, games
model-checking

warm-up

case-study

extra



14-11-06 AA1 3

The Problem
Application domain: Searching, planning, AI, 
scheduling, formal verification…
Idea:

You make a model of a system.
Description language = automaton/state-machine.
Your system changes its state according to a 
transition relation = set of rules that tell how the 
system may evolve.
Reachability problem: Given an initial state, how to 
reach a goal state?
Technique: Explore the state-space.



14-11-06 AA1 4

Definitions
A state is the snapshot configuration of a system, 
typically a tuple with the values of all the 
variables of the system.
The system changes state by taking transitions. 
The rules are given by a transition relation.
The set of all states is called the state-space.
A state S is reachable if there exists a sequence 
of transitions from the initial state to S.

This sequence of transition is called trace, path, or
witness.



14-11-06 AA1 5

Searching, a.k.a. State-space 
Exploration

Is the target
state reachable?
If yes, how?



14-11-06 AA1 6

Exploration Algorithm

S
(state,color)

not explored

explored

1: Pick white.
2: Mark it black.
3: Generate its successor states.
4: Add them to S.
5: Mark them white.
6: Repeat until find the goal.



14-11-06 AA1 7

Exploration Algorithm
search(init,target):
S={(init,white)}
if init = target then return true
while White ≠ ∅ do

pick (a,white) ∈ S
S = S[(a,black)/(a,white)]
forall a → a’ do

if a’ ∉ S then
S = S ∪ (a’,white)
if a’ = target then return true

fi
done

done
return false

white = not
explored yet.
black = explored.
White = {(a,c)∈S|
c=white}.
a∈S ⇔ {(b,c)∈S|
b=a} ≠ ∅.
→ = transition.



14-11-06 AA1 8

Correctness
The algorithm explores all possible 
reachable states.

It will terminate if the state-space is finite.
This is our case.
When it terminates, it proves that a state is 
reachable or not.

Problem: State-space explosion.



14-11-06 AA1 9

Technicalities
How to represent S?

Hash table.

How to pick-up the next state to be 
explored?

FIFO: Breadth-first-search.
LIFO: Depth-first search.
Priority queue: Guided search with heuristics.



14-11-06 AA1 10

Search Orderings

Breadth-first-search
(BFS)

1

2 3 4

5 6 7 8 9

10 11 12 13 14

Depth-first-search
(DFS)

1

2

3

4 5

6

7

8

9

10

11

12

13

14

Gives shortest
path but may
be more expensive
than heuristics or
random search.



14-11-06 AA1 11

Clean-up deadlocks – DFS

Depth-first-search
(DFS)

1

2

3

4 5

6

9

10

8 12

14

4 5

3

77

13

11 15



14-11-06 AA1 12

What can it do?
BFS/DFS -f option.
Clean-up deadlocks -g option (garbage).
Check reachability properties (depends on 
models).
Detect deadlocks -d option.
Print system -s option.
Print trace to found states.
Can explore millions of states @ 300000+ 
states/sec. Not a toy!



14-11-06 AA1 13

Design of the Model-Checker

modelchecker.c
The “engine” implementing
the exploration algorithm.

modelchecker.h
API to implement,
access to the models.uses

pegs.c

mutex.c

rw.c

Model of a
solitaire game.

Model of a
mutual exclusion
algorithm.

Model of a
multiple-readers,
single-writer algorithm.

implement126

574
283

531

680



14-11-06 AA1 14

Compilation

modelchecker.c pegs.c mutex.crw.c

modelchecker.o pegs.o mutex.orw.o

pegs mutexrw



14-11-06 AA1 15

Compilation - pthread

modelchecker.pthread.c pegs.c mutex.crw.c

modelchecker.pthread.o pegs.o mutex.orw.o

pegs.pthread mutex.pthreadrw.pthread



14-11-06 AA1 16

Compilation - mpi

modelchecker.mpi.c pegs.c mutex.crw.c

modelchecker.mpi.o pegs.o mutex.orw.o

pegs.mpi mutex.mpirw.mpi



14-11-06 AA1 17

Goal
You are given a working model-checker 
with a Makefile.

Modify modelchecker.pthread.c to parallelize it 
using pthreads.
Modify modelchecker.mpi.c to parallelize it 
using mpi.

But not now and not all at once.
Linux: Install LAM (lam-runtime + lam4-
dev).



14-11-06 AA1 18

Steps
Now:

Discover the model-checker, make sure you 
can compile & run it.
Understand its structure, read the code.

Later:
A simple version with pthread.
A better version with pthread.
A distributed version with MPI.


