Introduction to the Case-

!'_ Study: A Model-Checker

Alexandre David
B2-206

Classification of Problems

= Computation is known = Computation is not

= can divide statically known in advance
= |load balancing “easy” = dynamic distribution
= dependency problems = load balancing is an
« Off-line setup. ISSU€e
= Ex: . depende_nmes make it
: — more spicy
warm-up | = matrix-multiplication e
extra = linear equation solver = EX.

= Search, games
case-study | = model-checking

iThe Problem

= Application domain: Searching, planning, Al,
scheduling, formal verification...

s ldea:

= You make a model of a system.
Description language = automaton/state-machine.

= Your system changes its state according to a
transition relation = set of rules that tell how the
system may evolve.

= Reachability problem: Given an initial state, how to
reach a goal state?

= Technique: Explore the state-space.

Definitions

= A state Is the snapshot configuration of a system,
typically a tuple with the values of all the
variables of the system.

= The system changes state by taking transitions.
The rules are given by a transition relation.

= The set of all states is called the state-space.

= A state S is reachable If there exists a sequence
of transitions from the initial state to S.

= This sequence of transition is called trace, path, or
witness.

Searching, a.k.a. State-space

iEproration

Is the target
state reachable?
If yes, how?

v
14-11-06 AAl

Exploration Algorithm

O 01Tk, WN B

— (state,color)

() not explored
@ explored

. Pick white.

- Mark it black.

: Generate its successor states.
: Add them to S.

- Mark them white.

: Repeat until find the goal.

Exploration Algorithm

+

white = not
explored yet.
black = explored.
White = {(a,c)eS|
c=white}.

aeS < {(b,c)eS]
b=a} # J.

— = transition.

search(init,target):
S={(init,white)}
if init = farget then return true
while White # & do
pick (a,white) € S
S = S[(a,black)/(a,white)]
forall a —» a' do
if a' ¢ S then
S = S u (a white)
if a' = target then return true
fi
done
done
return false

iCorrectness

= The algorithm explores all possible
reachable states.

= It will terminate if the state-space is finite.
This Is our case.

= When It terminates, It proves that a state is
reachable or not.

= Problem: State-space explosion.

Technicalities

= How to represent S?
= Hash table.

= How to pick-up the next state to be
explored?
« FIFO: Breadth-first-search.

= LIFO: Depth-first search.
= Priority queue: Guided search with heuristics.

iSearch Orderings

Breadth-first-search Depth-first-search
BF DFS
(BFS) Gives shortest ()
path but may
be more expensive

than heuristics or
random search.

iCIean—up deadlocks — DFS

Depth-first-search
(DFS)

14-11-06 AAl

11

iWhat can it do?
. B

-S/DFES -f option.
= Clean-up deadlocks -g option (garbage).

= Check reachabillity properties (depends on
models).

= Detect deadlocks -d option.
= Print system -s option.
= Print trace to found states.

= Can explore millions of states @ 300000+
states/sec. Not a toy!

iDesign of the Model-Checker

126

A\ 4

modelchecker.h

Implement

A

uses

574
modelchecker.c

The “engine” implementing
the exploration algorithm.

API to implement,
access to the models.

680

283

531
pegs.c

Model of a
solitaire game.

rw.c

Model of a

multiple-readers,

mutex.c

Model of a
mutual exclusion
algorithm.

single-writer algorithm.

13

iCompiIation

modelchecker.c

\ 4

modelchecker.o

rw.c pegs.c mutex.c
rw.o pegs.o mutex.o
rw pegs mutex

14

iCompiIation - pthread

modelchecker.pthread.c rw.cC pegs.c mutex.c
modelchecker.pthread.o rw.o pegs.o mutex.o
rw.pthread | |pegs.pthread| imutex.pthread

15

iCompiIation - mpi

modelchecker.mpi.c rw.c pegs.c mutex.c

A 4 A 4 A 4 A 4

modelchecker.mpi.o rw.o pegs.o mutex.o

A 4 A 4 A 4

rw.mpi pegs.mpi mutex.mpi

iGoaI

= You are given a working model-checker
with a Makefile.

= Modify modelchecker.pthread.c to parallelize it
using pthreads.

=« Modify modelchecker.mpi.c to parallelize it
using mpi.

= But not now and not all at once.

= Linux: Install LAM (lam-runtime + lam4-
dev).

17

= Discover the model-checker, make sure you
can compile & run It.

= Understand its structure, read the code.
s Later:
= A simple version with pthread.

= A better version with pthread.
= A distributed version with MPI.

18

