
1

Introduction to
Parallel Computing

Alexandre David
B2-206

http://www.cs.aau.dk/~adavid/teaching/MTP-07/

Welcome.
Web page: schedule, book, exercises, slides, everything about the course.
Also accessible from my personal web page.
E-mail: adavid@cs.aau.dk, also from my web page.

2

16-02-2007 Alexandre David, MVP'07 2

Presentation of the Course

Parallel Computing
Little on parallel hardware
Mostly on parallel algorithms and design

Models for Parallelism (PRAM…)
Tools for Parallelism (MPI, pthreads…)
15 lectures, 3x30 min + exercises
TAs: Morten Kühnrich & Simon Holm
Thøgersen – {mokyhn,odie}@cs.aau.dk

Updated from last year, changed content according to feedback and
discussions with other lecturers.
No overlap with other courses.
Only place in the curriculum where you have a chance to learn about
parallel programming.

Meaning of the course:
•Models for parallel machines and programs, programming paradigms, etc...
•Tools for parallelism: standard API s.a. MPI, pthreads, OpenMP (not in the
course but you have materials in the book).

3

16-02-2007 Alexandre David, MVP'07 3

The Course Book

Introduction to
Parallel Computing
Covers many
aspects on parallel
computing.
Both basic and
advanced topics.
I will follow the book
but not cover it all.

Claims to be modular and suitable for a wide variety of undergraduate and
graduate level courses.
Covers traditional algorithms (sorting, graph, searching) and scientific
computing algorithms (matrix, FFT).
Practical, code examples.
MPI, pthreads, also OpenMP (not in this course): 3 most widely used
standards for writing portable parallel programs.
Recent (2003) and solid book.
Show the plan of the chapters (Figures/chap1.pdf).

4

16-02-2007 Alexandre David, MVP'07 4

Course & Assignments

Lectures will be alternated between
theory & practice.

Course will be reorganized from last year.

Assignments will be half theory, half
practice.

7 assignments, all compulsory.
Model: complete them until they are good.

Careful: Do not accumulate delay.

5

16-02-2007 Alexandre David, MVP'07 5

Goals of the Course

Design, analysis, and implementation of
parallel algorithms.

Principles of parallel algorithm design.
Analytical modeling of parallel programs.
Tools such as MPI & pthreads.
Some examples.

Main goal (design, analysis, implementation) that needs important notions
(sub-goals).
Short motivation:
•Hardware: Parallel computing has changed from tightly scalable message
passing platforms to today’s inexpensive clusters and multiprocessor
machines.
•Software: Programming models have evolved from custom to standard
APIs. MPI = standard message passing library, pthreads = thread library,
OpenMP = directive based models.
Impact on process of design, analysis, and implementation of parallel
algorithms: What this course is about.

6

16-02-2007 Alexandre David, MVP'07 6

Do We Need Parallelism?

Complexity of parallel programs: How
to specify and coordinate concurrent
tasks?
Question of portable algorithm
standards?
Need to accelerate applications?

?

?

?

?

race/deadlock/livelock

There is another course dealing with the question of concurrency, in
particular problems of deadlocks, livelocks, synchronization, condition
variables, etc… I won’t spend much time on the needed concepts, only what
I need for this course (more pragmatic and practical approach).
•Specify: How to decompose a problem (most often sequential) into a set of
parallel tasks to execute?
•Coordinate: Efficiency (control overhead in extra communication) and
correctness issues (race conditions, deadlocks, livelocks).
Recall of race condition (several execution orderings may yield different
results with the same program), deadlock (system not responding or doing
anything), livelock (infinite loop without progress).
Algorithm standards: Actually in terms of API, now there are some.
Need to accelerate: Think of spending 2 years of development when the
platform is going to be obsolete by the time you are finished.

7

16-02-2007 Alexandre David, MVP'07 7

Trends in Hardware

Everything points towards parallelism
from multi-core, hyper-threading, multi-
threads, superscalar, … technologies.
Because

Limits to continue to increment
performance with single processors.
Other constraints like heat, complexity,
yields, etc…

Put a product name on all of these technologies to make it more concrete:
•Multi-core: X2 Athlon64, Intel’s dual-core (P4 & new mobile CPU).
•Hyper-threading: Intel’s technology to utilize the CPU better (switch thread
instead of staying stalled on data).
•Multi-thread: Microsoft Xbox CPU, multithread triple core.
•Superscalar: Every modern GPU and CPU, several instructions in the
same clock cycle (pipeline, different execution units).
Single processors have implicit lack of parallelism and have bottlenecks
such as critical data paths and limited memory sub-system.
Example: multi-core recent design adopt simpler architectures replicated
several times (no out-of-order execution), why? Complexity, efficiency/watt,
die-size, price transistor/OPS (operation per second).

8

16-02-2007 Alexandre David, MVP'07 8

Arguments for Parallelism

Computational power:
Moore’s law.
Translating transistors into useful OPS.

Memory/disk speed:
Performance/yr: CPU +40%, DRAM +10%.
How to feed data?

Parallel platforms: larger aggregate
cache+bandwidth+IPC…

•Computational power: The demand for higher and higher computation
power always grows, Moore’s law is only the technological answer to that
demand. We want to pursue Moore’s law, that’s why it still holds. The
question is: How to continue from now on? (with the problems mentioned
before).
•Memory/disk speed: Overall system performance is defined by CPU speed
and the ability of the system to feed data to it. We have cheated so far by
bridging the speed gap with caches that work thanks to the data locality
property of almost all programs. Still we have both problems of latency and
bandwidth. The same applies to disks (you are familiar with RAID
technology).
•Parallel platforms: Linear increase in the number of processors of cache,
bandwidth, etc… in total. The question is: How to use the increased
resource such that the performance has a linear increase as well?
•Other arguments: Data communication (SETI@home a.k.a. search for
extraterrestrial intelligence), constraints on location of data & resources that
require distributed/parallel algorithms.

9

16-02-2007 Alexandre David, MVP'07 9

Scope of Parallel Algorithms

Engineering & design.
Scientific computing.
Commercial (web) applications.
Embedded systems.
Gaming industry.

•Engineering & design: complex physical processes, geometric &
mathematical modeling in context of parallel computers.
•Scientific applications: human genome sequencing, computational physics
& chemistry.
•Commercial applications: multiprocessor & cluster machines for web &
database servers.
•Embedded systems: cars, planes, etc… have many computer systems
communicating via some network. 90% of computer systems are embedded
systems.
•Gaming industry: Xbox 360 (triple core CPU + general multi vertex/pixel
shader engine), PS3 with Cell processor (8 simple computational units + 1
G5 on one core).

10

Parallel Programming
Platforms

11

16-02-2007 Alexandre David, MVP'07 11

Outline

Implicit Parallelism (2.1)
Limitations of Memory System
Performance (2.2)
Dichotomy of Parallel Computing
Platforms (2.3)

I will follow the book, skipping sections from time to time but the order will
be respected. References to sections are given on the web and reminded
during the lectures (plan may change). Lectures are intended to teach you
and help you read the book.

12

16-02-2007 Alexandre David, MVP'07 12

Motivations

Bottlenecks in computers:
Processor
Memory
Datapath

Addressed with multiplicity.
Parallelization not solution to everything

Sub-optimal serial code bad
Optimize serial first (similar characteristics)

Bottlenecks of different kinds.
•Processor: less and less, though can be depending on some bad behaviors
(branch miss prediction in large pipelines).
•Memory: more and more considering the speed gap between processor
and memory, the problem being how to feed the processor with data so that
it does not stay idle.
•Datapath: depends on programs and architecture, linked to previous ones.
Motivations for optimizing serial programs and why we talk about implicit
parallelism: Sub-optimal serial code exhibits unreliable and misleading
behaviors. Undesirable effects coming from poor cache utilization, bad
branch prediction, etc … that may become even worse in a parallel context
(distribute data, synchronize, etc …).
Similar characteristics in serial programs with intrinsic parallelism of modern
processors (pipelines). Understanding architecture is the first step to good
programming.

13

16-02-2007 Alexandre David, MVP'07 13

Trends in Microprocessors
Processor speed increase exponentially
More and more transistors: How to use
them wisely?
Several instructions are issues in the
same clock cycle (possibly on multiple
functional units) : superscalar
processors.
How to select and execute instructions?

Already mentioned: Moore’s law power x2 every 18 month, but for
processor only. Global performance plagued by memory abysmal
performance. Higher level of integration poses the question of how to best
utilize transistors.
Functional units: MMU, FPU, etc usually part of the marketing buzz of
microprocessor companies.
How to? That’s the different architectures, not going into details but basically
all processors are +/- RISC processors with a translation from assembler to
microcode. Then most have branch prediction.

14

16-02-2007 Alexandre David, MVP'07 14

Pipelining and Superscalar
Execution

Pipeline idea: overlap stages in
instruction execution.
Example of car factory.
The good: higher throughput.
The bad: penalty of branch miss
prediction.
Multiple pipelines: several functional
units.

Overlapping stages: cut instructions in small pieces, one per cycle, and try
to occupy all the stages. But why after all? Not better to have a super
powerful one stage-do-all? Car factory: Imagine a fast factory where it takes
12h to complete one car. If there is one unit doing all, then it will be busy all
the time and throughput would be 1 car per 12h. How to improve? Buy 11
other full scale units? Super expensive! Cut the bit unit in 12 smaller parts,
1h per part, every car needs 12h but throughput is 1 car per hour. 12x
faster, cost efficient.
Branch prediction: try to keep the pipeline busy by filling it ahead, but if did it
wrong, then need to flush it (and loose all the computations). P4: 20 stages,
miss prediction means loose 20 cycles.

15

16-02-2007 Alexandre David, MVP'07 15

Pipelining and Superscalar
Execution

1. load R1,@1000
2. load R2,@1008
3. addR1,@1004
4. addR2,@100C
5. add R1,R2
6. store R1,@2000

c=a+b+c+d
as
c=(a+b)+(c+d)

Compiler

CPU

Instruction cycles

0 2 4 6 8

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

2x IF, ID, OF, … in the same cycle:
superscalar.

Dual issue or two-way superscalar execution.
IF: Instruction Fetch.
ID: Instruction Decode.
OF: Operand Fetch.
E: Instruction Execute.
WB: Write back.
NA: No Action.
Note: begin to execute 6th instruction at 4th clock cycle.

Compare the number of cycles without pipelining and/or superscalar.

16

16-02-2007 Alexandre David, MVP'07 16

Pipelining and Superscalar
Execution

Imagine another ordering (or
factorization by the compiler):
different performance.
Resolve data dependency.
Reordering by CPU possible (out-of-
order execution).
Resource dependency.

Data dependency: needs previous results in order to continue computations.
A=(B+C)*D, we need B+C before computing *D.
Resource dependency: needs functional units. A=B*C+C*D+D*E+E*F+F*G,
obviously not all * can be done in parallel because of lack of functional units.
Most processors are capable of out-of-order execution, not Xbox 360.

17

16-02-2007 Alexandre David, MVP'07 17

Limitations

Bottleneck: slowest stage -> small
stages to go fast -> long pipelines

BUT miss prediction gives big penalties

How to keep busy the functional units?

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

Horizontal waste:
parts of execution
units used.

NA
Vertical waste:
no instruction on
execution unit. Here
no instruction on the
adder unit.

Intrinsic parallelism: Pipeline (multiple stages) & multiple functional units
(superscalar) implement parallelism.
Modern processors: 4 way superscalar, 10-20 stage pipeline.

18

16-02-2007 Alexandre David, MVP'07 18

Adder Utilization (fig 2.1)

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

Adder functional unit: execute =
2 units.

E

3 4 5 6 7 8

E
E

E
NA

vertical (adder idle)
horizontal (partial use)

More explanation for fig 2.1.

19

16-02-2007 Alexandre David, MVP'07 19

VLIWP

Bundle instructions together to simplify
the superscalar scheduler.
IA64 (Itanium) is an example.
Problems:

Rely a lot on the compiler.
Limited parallelism (not dynamic).

?

Very Long Instruction Word Processors!
Superscalar schedulers are complex and expensive (transistors). VLIW
design idea is to rely on the compiler to bundle instructions together, so that
the scheduler becomes very simple.

20

16-02-2007 Alexandre David, MVP'07 20

Limitations of Memory System
Performance

The memory system is most often the
bottleneck.
Performance captured by

latency and
bandwidth.

Remark: In practice latency is
complicated to define: CL2, CL3, 2-2-2-
5,…

The problem is most often how to feed the processor with continuous data
so that it does not stall.
Latency is the time from the issue of a memory request to the time the data
becomes available to the processor.
Bandwidth is the rate at which data can be pumped to the processor.
Example: water hose. Latency: time before first drop of water comes out.
Bandwidth: rate flow of water.

21

16-02-2007 Alexandre David, MVP'07 21

Effect on Performance:
An Example
Processor @1GHz (1ns cycle), DRAM
with 100ns latency, capable of
executing 4 IPC.
4 IPC @1GHz -> 4GFLOPS peak rating.
Processor must wait 100 cycles for
every request.

Vector operations (dot product)
@10MFLOPs.

No cache in this example to simplify. It is still general enough since we can
consider first access to some memory and take cache miss into account.
ALU: arithmetic and logical unit.
FPU: floating point unit.
Here absolute worst case scenario but still we loose a factor 100 in
performance.

22

16-02-2007 Alexandre David, MVP'07 22

Improving with Cache

Note: Often “$$” on pictures (cash).
Hierarchical memory architecture with
several levels of cache (2 common).
Instruction and data separate for L1.
Low latency, high bandwidth, but
small.
Why does it improve performance????

Common: Athlon 64 64K+64K L1, 1M L2. Pentium 4 more complicated
NetBurst with execution trace cache (12K) and 16K L1, with 1M L2.
Now you have to think some time about why it helps. You know about cache
hit ratio, cache miss, at least you’ve heard about it.

23

16-02-2007 Alexandre David, MVP'07 23

Why is $$ good?
Temporal locality

Repeated access to the same data in a
small window of time.

Spatial locality
Consecutive data accessed by successive
instructions.

Vital assumptions, almost always hold.
Very important for parallel computing.

REMEMBER these two! They are common to almost all programs and are
vital to cache performance.
For parallel computing, even more important: apart from the aggregate
higher amount of cache that must be used wisely, we have more penalty for
moving data around processors (or processor nodes).
That also explains the model numbering for AMD processors. ☺

24

16-02-2007 Alexandre David, MVP'07 24

Matrix Multiplication Example

Common example, will be used many times
in the course.
C=A*B, where A (n*m), B (p*n), and C
(p*m) are matrices.

∑
=

=
n

k
kjikij bac

1

Compatible dimensions required. In practice n*n.

25

16-02-2007 Alexandre David, MVP'07 25

Matrix Multiplication Example

i

j

k

1

A

B

C

26

16-02-2007 Alexandre David, MVP'07 26

Matrix Multiplication Example

i

j

A

B

C

ai1

b1j

*
ai2

b2j

*

1 add & mul/k
n3 total

(n*n matrices).
Re-use

Re-use: spatial and temporal localities. Intuitively: n3 accesses on 2x n2

matrices (if n*n).

27

16-02-2007 Alexandre David, MVP'07 27

Cache Characteristics

Hit ratio (behavior): fraction of
references satisfied by the cache.
Cache line (= bus width): granularity.
Associativity (architecture): “collision
list” to reduce cache eviction.
For the matrix: 2n2 fetches from
memory to populate the cache, and
then n3 direct accesses at full speed.

Data re-use is the keyword. Cache line: word granularity is too expensive
and bad for spatial locality. 4 words usually for L2 (access to system bus),
and internally 256-bit data bus for L1<->L2 (8 words).
The term cache eviction is not mentioned in the book and is missing. It is an
important notion to know.

28

16-02-2007 Alexandre David, MVP'07 28

Impact on Memory Bandwidth
(and Latency)

Access to successive words much better
than random access.

Higher bandwidth (whole cache line at
once)
Better latency (successive words already in
cache)

29

16-02-2007 Alexandre David, MVP'07 29

Example: Strided Access

a) Add vectors (temporary results) to get final result.
b) Compute final result incrementally.
Strided access (a) yields poor performance.

30

16-02-2007 Alexandre David, MVP'07 30

Other Approaches to Hide
Latency

Prefetching
but may evict useful data because cache is
small.

Multi-threading
but needs higher bandwidth because all
the threads share the same bus.

Prefetching is like fetching the next cache line when possible (hardware
decides), or same effect by reordering instructions (hardware or compiler) to
issue loads long before usage. Works if consecutive words are accessed by
consecutive instructions (spatial locality).
Multi-thread: switch to another thread when a thread stalls for data and keep
the processor busy.
In fact, both solutions address the latency problem and exacerbate the
bandwidth problem. That was probably the design idea behind RAMBUS,
though no multi-threading at the time to use it! + the fact that latency was
way higher than other systems.

31

16-02-2007 Alexandre David, MVP'07 31

Multi-threading

iA

B

C

1 thread/dot product

BUT: need more bandwidth!
?

Software: need to create the threads explicitly.
Hardware: need support for multi-thread.

32

16-02-2007 Alexandre David, MVP'07 32

Summary on Memory

Exploit spatial and temporal locality in
programs. For sequential and parallel
programs!
Operations/memory accesses is a good
indicator of tolerance to memory
bandwidth.
Processing is cheap, memory is
expensive.

33

16-02-2007 Alexandre David, MVP'07 33

Dichotomy of Parallel
Computing Platforms
Logical organization: programmer’s view.
Physical organization: actual hardware.
Two critical components:

expressing parallel tasks
(control structure)
specifying interaction between them
(communication model).

The 2 critical components both through logical and physical organizations.

34

16-02-2007 Alexandre David, MVP'07 34

Control Structure

Parallelism can be expressed at
different levels of granularity

from instruction level parallelism
to processes.

SIMD: single instruction stream,
multiple data stream.
MIMD: multiple instruction stream …

Processing units in parallel computers either operate under the centralized
control of a single control unit or work independently.
•SIMD: A single control unit dispatches the same instruction to various
processors or functional units.
•MIMD: Each processor has its own control unit and can execute different
instructions on different data items.

35

16-02-2007 Alexandre David, MVP'07 35

PE: processing element.
Typically, SIMD implemented as special instruction sets on processors
(MMX, SSE, SSE2, 3DNow!), and MIMD implemented as multiprocessor
machines or clusters.
SIMD relies on the regular structure of computations (such as those in
image processing).
A variant of MIMD, called single program multiple data streams (SPMD)
executes the same program on different processors, which is often the case
in practice.

36

16-02-2007 Alexandre David, MVP'07 36

Communication Model:
Shared Address Space

Memory shared between several
processors.

NUMA different access time
UMA same access time.
Cases with local cache considered UMA.

Easier programming, one address space
but cache coherence mechanisms needed,
But need to solve contention (writes).

NUMA: non-uniform memory access. Cheaper and easier to implement.
Need locality to perform well.
UMA: uniform memory access. Performant uniform access expensive.

37

16-02-2007 Alexandre David, MVP'07 37

UMA vs. NUMA

38

16-02-2007 Alexandre David, MVP'07 38

Communication Model:
Shared Address Space

Memory

read/write

Implemented as shared memory computers
or distributed memory computers.

39

16-02-2007 Alexandre David, MVP'07 39

Message-Passing Platforms

Memory private to processors.
Interaction via messages

Send/receive primitives.
MPI libraries.

Hardware needed: good network
interconnect.

Cheap and popular solution: cluster of MP machines connected via high
bandwidth network.

