
1

Introduction to
Parallel Computing

Alexandre David
B2-206

http://www.cs.aau.dk/~adavid/teaching/MTP-07/

Welcome.
Web page: schedule, book, exercises, slides, everything about the course. 
Also accessible from my personal web page.
E-mail: adavid@cs.aau.dk, also from my web page.
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Presentation of the Course

Parallel Computing
Little on parallel hardware
Mostly on parallel algorithms and design

Models for Parallelism (PRAM…)
Tools for Parallelism (MPI, pthreads…)
15 lectures, 3x30 min + exercises
TAs: Morten Kühnrich & Simon Holm 
Thøgersen – {mokyhn,odie}@cs.aau.dk

Updated from last year, changed content according to feedback and 
discussions with other lecturers.
No overlap with other courses.
Only place in the curriculum where you have a chance to learn about 
parallel programming.

Meaning of the course:
•Models for parallel machines and programs, programming paradigms, etc...
•Tools for parallelism: standard API s.a. MPI, pthreads, OpenMP (not in the 
course but you have materials in the book).
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The Course Book

Introduction to 
Parallel Computing
Covers many 
aspects on parallel 
computing.
Both basic and 
advanced topics.
I will follow the book 
but not cover it all.

Claims to be modular and suitable for a wide variety of undergraduate and 
graduate level courses.
Covers traditional algorithms (sorting, graph, searching) and scientific 
computing algorithms (matrix, FFT).
Practical, code examples.
MPI, pthreads, also OpenMP (not in this course): 3 most widely used 
standards for writing portable parallel programs.
Recent (2003) and solid book.
Show the plan of the chapters (Figures/chap1.pdf).
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Course & Assignments

Lectures will be alternated between 
theory & practice.

Course will be reorganized from last year.

Assignments will be half theory, half 
practice.

7 assignments, all compulsory.
Model: complete them until they are good.

Careful: Do not accumulate delay.
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Goals of the Course

Design, analysis, and implementation of 
parallel algorithms.

Principles of parallel algorithm design.
Analytical modeling of parallel programs.
Tools such as MPI & pthreads.
Some examples.

Main goal (design, analysis, implementation) that needs important notions 
(sub-goals).
Short motivation:
•Hardware: Parallel computing has changed from tightly scalable message 
passing platforms to today’s inexpensive clusters and multiprocessor 
machines.
•Software: Programming models have evolved from custom to standard 
APIs. MPI = standard message passing library, pthreads = thread library, 
OpenMP = directive based models.
Impact on process of design, analysis, and implementation of parallel 
algorithms: What this course is about.
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Do We Need Parallelism?

Complexity of parallel programs: How 
to specify and coordinate concurrent
tasks?
Question of portable algorithm 
standards?
Need to accelerate applications?

?

?

?

?

race/deadlock/livelock

There is another course dealing with the question of concurrency, in 
particular problems of deadlocks, livelocks, synchronization, condition 
variables, etc… I won’t spend much time on the needed concepts, only what 
I need for this course (more pragmatic and practical approach).
•Specify: How to decompose a problem (most often sequential) into a set of 
parallel tasks to execute?
•Coordinate: Efficiency (control overhead in extra communication) and 
correctness issues (race conditions, deadlocks, livelocks).
Recall of race condition (several execution orderings may yield different 
results with the same program), deadlock (system not responding or doing 
anything), livelock (infinite loop without progress).
Algorithm standards: Actually in terms of API, now there are some.
Need to accelerate: Think of spending 2 years of development when the 
platform is going to be obsolete by the time you are finished.
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Trends in Hardware

Everything points towards parallelism 
from multi-core, hyper-threading, multi-
threads, superscalar, … technologies.
Because

Limits to continue to increment 
performance with single processors.
Other constraints like heat, complexity, 
yields, etc…

Put a product name on all of these technologies to make it more concrete:
•Multi-core: X2 Athlon64, Intel’s dual-core (P4 & new mobile CPU).
•Hyper-threading: Intel’s technology to utilize the CPU better (switch thread 
instead of staying stalled on data).
•Multi-thread: Microsoft Xbox CPU, multithread triple core.
•Superscalar: Every modern GPU and CPU, several instructions in the 
same clock cycle (pipeline, different execution units).
Single processors have implicit lack of parallelism and have bottlenecks 
such as critical data paths and limited memory sub-system.
Example: multi-core recent design adopt simpler architectures replicated 
several times (no out-of-order execution), why? Complexity, efficiency/watt, 
die-size, price transistor/OPS (operation per second).
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Arguments for Parallelism

Computational power:
Moore’s law.
Translating transistors into useful OPS.

Memory/disk speed:
Performance/yr: CPU +40%, DRAM +10%.
How to feed data?

Parallel platforms: larger aggregate 
cache+bandwidth+IPC…

•Computational power: The demand for higher and higher computation 
power always grows, Moore’s law is only the technological answer to that 
demand. We want to pursue Moore’s law, that’s why it still holds. The 
question is: How to continue from now on? (with the problems mentioned 
before).
•Memory/disk speed: Overall system performance is defined by CPU speed 
and the ability of the system to feed data to it. We have cheated so far by 
bridging the speed gap with caches that work thanks to the data locality
property of almost all programs. Still we have both problems of latency and 
bandwidth. The same applies to disks (you are familiar with RAID 
technology).
•Parallel platforms: Linear increase in the number of processors of cache, 
bandwidth, etc… in total. The question is: How to use the increased 
resource such that the performance has a linear increase as well?
•Other arguments: Data communication (SETI@home a.k.a. search for 
extraterrestrial intelligence), constraints on location of data & resources that 
require distributed/parallel algorithms.
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Scope of Parallel Algorithms

Engineering & design.
Scientific computing.
Commercial (web) applications.
Embedded systems.
Gaming industry.

•Engineering & design: complex physical processes, geometric & 
mathematical modeling in context of parallel computers.
•Scientific applications: human genome sequencing, computational physics 
& chemistry.
•Commercial applications: multiprocessor & cluster machines for web & 
database servers.
•Embedded systems: cars, planes, etc… have many computer systems 
communicating via some network. 90% of computer systems are embedded 
systems.
•Gaming industry: Xbox 360 (triple core CPU + general multi vertex/pixel 
shader engine), PS3 with Cell processor (8 simple computational units + 1 
G5 on one core).
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Parallel Programming 
Platforms
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Outline

Implicit Parallelism (2.1)
Limitations of Memory System 
Performance (2.2)
Dichotomy of Parallel Computing 
Platforms (2.3)

I will follow the book, skipping sections from time to time but the order will 
be respected. References to sections are given on the web and reminded 
during the lectures (plan may change). Lectures are intended to teach you 
and help you read the book.
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Motivations

Bottlenecks in computers:
Processor
Memory
Datapath

Addressed with multiplicity.
Parallelization not solution to everything

Sub-optimal serial code bad
Optimize serial first (similar characteristics)

Bottlenecks of different kinds.
•Processor: less and less, though can be depending on some bad behaviors 
(branch miss prediction in large pipelines).
•Memory: more and more considering the speed gap between processor 
and memory, the problem being how to feed the processor with data so that 
it does not stay idle.
•Datapath: depends on programs and architecture, linked to previous ones.
Motivations for optimizing serial programs and why we talk about implicit 
parallelism: Sub-optimal serial code exhibits unreliable and misleading
behaviors. Undesirable effects coming from poor cache utilization, bad 
branch prediction, etc … that may become even worse in a parallel context 
(distribute data, synchronize, etc …).
Similar characteristics in serial programs with intrinsic parallelism of modern 
processors (pipelines). Understanding architecture is the first step to good 
programming.
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Trends in Microprocessors
Processor speed increase exponentially
More and more transistors: How to use 
them wisely?
Several instructions are issues in the 
same clock cycle (possibly on multiple 
functional units) : superscalar
processors.
How to select and execute instructions?

Already mentioned: Moore’s law power x2 every 18 month, but for 
processor only. Global performance plagued by memory abysmal 
performance. Higher level of integration poses the question of how to best 
utilize transistors.
Functional units: MMU, FPU, etc usually part of the marketing buzz of 
microprocessor companies.
How to? That’s the different architectures, not going into details but basically 
all processors are +/- RISC processors with a translation from assembler to 
microcode. Then most have branch prediction.
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Pipelining and Superscalar 
Execution

Pipeline idea: overlap stages in 
instruction execution.
Example of car factory.
The good: higher throughput.
The bad: penalty of branch miss 
prediction.
Multiple pipelines: several functional 
units.

Overlapping stages: cut instructions in small pieces, one per cycle, and try 
to occupy all the stages. But why after all? Not better to have a super 
powerful one stage-do-all? Car factory: Imagine a fast factory where it takes 
12h to complete one car. If there is one unit doing all, then it will be busy all 
the time and throughput would be 1 car per 12h. How to improve? Buy 11 
other full scale units? Super expensive! Cut the bit unit in 12 smaller parts, 
1h per part, every car needs 12h but throughput is 1 car per hour. 12x 
faster, cost efficient.
Branch prediction: try to keep the pipeline busy by filling it ahead, but if did it 
wrong, then need to flush it (and loose all the computations). P4: 20 stages, 
miss prediction means loose 20 cycles.
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Pipelining and Superscalar 
Execution

1. load R1,@1000
2. load R2,@1008
3. addR1,@1004
4. addR2,@100C
5. add R1,R2
6. store R1,@2000

c=a+b+c+d
as
c=(a+b)+(c+d)

Compiler

CPU

Instruction cycles

0 2 4 6 8

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

2x IF, ID, OF, … in the same cycle:
superscalar.

Dual issue or two-way superscalar execution.
IF: Instruction Fetch.
ID: Instruction Decode.
OF: Operand Fetch.
E: Instruction Execute.
WB: Write back.
NA: No Action.
Note: begin to execute 6th instruction at 4th clock cycle.

Compare the number of cycles without pipelining and/or superscalar.
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Pipelining and Superscalar 
Execution

Imagine another ordering (or 
factorization by the compiler): 
different performance.
Resolve data dependency.
Reordering by CPU possible (out-of-
order execution).
Resource dependency.

Data dependency: needs previous results in order to continue computations. 
A=(B+C)*D, we need B+C before computing *D.
Resource dependency: needs functional units. A=B*C+C*D+D*E+E*F+F*G, 
obviously not all * can be done in parallel because of lack of functional units.
Most processors are capable of out-of-order execution, not Xbox 360.
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Limitations

Bottleneck: slowest stage -> small 
stages to go fast -> long pipelines

BUT miss prediction gives big penalties

How to keep busy the functional units?

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

Horizontal waste:
parts of execution
units used.

NA
Vertical waste:
no instruction on
execution unit. Here
no instruction on the
adder unit.

Intrinsic parallelism: Pipeline (multiple stages) & multiple functional units 
(superscalar) implement parallelism.
Modern processors: 4 way superscalar, 10-20 stage pipeline.
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Adder Utilization (fig 2.1)

IF
IF

ID
ID

OF
OF

IF
IF

ID
ID

OF
OF

E
E

IF ID NA E
IF ID NA WB

Adder functional unit: execute =
2 units.

E

3    4    5      6    7      8

E
E

E
NA

vertical (adder idle)
horizontal (partial use)

More explanation for fig 2.1.
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VLIWP

Bundle instructions together to simplify 
the superscalar scheduler.
IA64 (Itanium) is an example.
Problems:

Rely a lot on the compiler.
Limited parallelism (not dynamic).

?

Very Long Instruction Word Processors!
Superscalar schedulers are complex and expensive (transistors). VLIW 
design idea is to rely on the compiler to bundle instructions together, so that 
the scheduler becomes very simple.
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Limitations of Memory System 
Performance

The memory system is most often the 
bottleneck.
Performance captured by

latency and
bandwidth.

Remark: In practice latency is 
complicated to define: CL2, CL3, 2-2-2-
5,…

The problem is most often how to feed the processor with continuous data 
so that it does not stall.
Latency is the time from the issue of a memory request to the time the data 
becomes available to the processor.
Bandwidth is the rate at which data can be pumped to the processor.
Example: water hose. Latency: time before first drop of water comes out. 
Bandwidth: rate flow of water.
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Effect on Performance:
An Example
Processor @1GHz (1ns cycle), DRAM 
with 100ns latency, capable of 
executing 4 IPC.
4 IPC @1GHz -> 4GFLOPS peak rating.
Processor must wait 100 cycles for 
every request.

Vector operations (dot product) 
@10MFLOPs.

No cache in this example to simplify. It is still general enough since we can 
consider first access to some memory and take cache miss into account.
ALU: arithmetic and logical unit.
FPU: floating point unit.
Here absolute worst case scenario but still we loose a factor 100 in 
performance.
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Improving with Cache

Note: Often “$$” on pictures (cash).
Hierarchical memory architecture with 
several levels of cache (2 common).
Instruction and data separate for L1.
Low latency, high bandwidth, but 
small.
Why does it improve performance????

Common: Athlon 64 64K+64K L1, 1M L2. Pentium 4 more complicated 
NetBurst with execution trace cache (12K) and 16K L1, with 1M L2.
Now you have to think some time about why it helps. You know about cache 
hit ratio, cache miss, at least you’ve heard about it.
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Why is $$ good?
Temporal locality

Repeated access to the same data in a 
small window of time.

Spatial locality
Consecutive data accessed by successive 
instructions.

Vital assumptions, almost always hold.
Very important for parallel computing.

REMEMBER these two! They are common to almost all programs and are 
vital to cache performance.
For parallel computing, even more important: apart from the aggregate 
higher amount of cache that must be used wisely, we have more penalty for 
moving data around processors (or processor nodes).
That also explains the model numbering for AMD processors. ☺
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Matrix Multiplication Example

Common example, will be used many times 
in the course.
C=A*B, where A (n*m), B (p*n), and C 
(p*m) are matrices.

∑
=

=
n

k
kjikij bac

1

Compatible dimensions required. In practice n*n.
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Matrix Multiplication Example

i

j

k

1

A

B

C
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Matrix Multiplication Example

i

j

A

B

C

ai1

b1j

*
ai2

b2j

*

1 add & mul/k
n3 total

(n*n matrices).
Re-use

Re-use: spatial and temporal localities. Intuitively: n3 accesses on 2x n2

matrices (if n*n).
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Cache Characteristics

Hit ratio (behavior): fraction of 
references satisfied by the cache.
Cache line (= bus width): granularity.
Associativity (architecture): “collision 
list” to reduce cache eviction.
For the matrix: 2n2 fetches from 
memory to populate the cache, and 
then n3 direct accesses at full speed.

Data re-use is the keyword. Cache line: word granularity is too expensive 
and bad for spatial locality. 4 words usually for L2 (access to system bus), 
and internally 256-bit data bus for L1<->L2 (8 words).
The term cache eviction is not mentioned in the book and is missing. It is an 
important notion to know.
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Impact on Memory Bandwidth 
(and Latency)

Access to successive words much better 
than random access.

Higher bandwidth (whole cache line at 
once)
Better latency (successive words already in 
cache)
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Example: Strided Access

a) Add vectors (temporary results) to get final result.
b) Compute final result incrementally.
Strided access (a) yields poor performance.
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Other Approaches to Hide 
Latency

Prefetching
but may evict useful data because cache is 
small.

Multi-threading
but needs higher bandwidth because all 
the threads share the same bus.

Prefetching is like fetching the next cache line when possible (hardware 
decides), or same effect by reordering instructions (hardware or compiler) to 
issue loads long before usage. Works if consecutive words are accessed by 
consecutive instructions (spatial locality).
Multi-thread: switch to another thread when a thread stalls for data and keep 
the processor busy.
In fact, both solutions address the latency problem and exacerbate the 
bandwidth problem. That was probably the design idea behind RAMBUS, 
though no multi-threading at the time to use it! + the fact that latency was 
way higher than other systems.
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Multi-threading

iA

B

C

1 thread/dot product

BUT: need more bandwidth!
?

Software: need to create the threads explicitly.
Hardware: need support for multi-thread.
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Summary on Memory

Exploit spatial and temporal locality in 
programs. For sequential and parallel 
programs!
Operations/memory accesses is a good 
indicator of tolerance to memory 
bandwidth.
Processing is cheap, memory is 
expensive.
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Dichotomy of Parallel 
Computing Platforms
Logical organization: programmer’s view.
Physical organization: actual hardware.
Two critical components:

expressing parallel tasks
(control structure)
specifying interaction between them
(communication model).

The 2 critical components both through logical and physical organizations.
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Control Structure

Parallelism can be expressed at 
different levels of granularity

from instruction level parallelism
to processes.

SIMD: single instruction stream, 
multiple data stream.
MIMD: multiple instruction stream …

Processing units in parallel computers either operate under the centralized 
control of a single control unit or work independently.
•SIMD: A single control unit dispatches the same instruction to various 
processors or functional units.
•MIMD: Each processor has its own control unit and can execute different 
instructions on different data items.
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PE: processing element.
Typically, SIMD implemented as special instruction sets on processors 
(MMX, SSE, SSE2, 3DNow!), and MIMD implemented as multiprocessor
machines or clusters.
SIMD relies on the regular structure of computations (such as those in 
image processing).
A variant of MIMD, called single program multiple data streams (SPMD) 
executes the same program on different processors, which is often the case 
in practice.
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Communication Model:
Shared Address Space

Memory shared between several 
processors.

NUMA different access time
UMA same access time.
Cases with local cache considered UMA.

Easier programming, one address space
but cache coherence mechanisms needed,
But need to solve contention (writes).

NUMA: non-uniform memory access. Cheaper and easier to implement. 
Need locality to perform well.
UMA: uniform memory access. Performant uniform access expensive.
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UMA vs. NUMA
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Communication Model:
Shared Address Space

Memory

read/write

Implemented as shared memory computers
or distributed memory computers.
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Message-Passing Platforms

Memory private to processors.
Interaction via messages

Send/receive primitives.
MPI libraries.

Hardware needed: good network 
interconnect.

Cheap and popular solution: cluster of MP machines connected via high 
bandwidth network.


